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ABSTRACT. Novel fragmental Szeged indices, defined on unsymmetric property matrices,
which collect various fragmental properties, are proposed. Classical vertex Szeged indices
and fragmental descriptors are tested for correlating ability with physico—chemical proper-
ties of two sets of cycle-containing organic structures. Some QSPR models are proposed.

INTRODUCTION

Wiener index [1], W, one of the most studied topological indices, (see the recent

reviews 2, 3, 4]) is defined, for acyclic structures, by
W =3 Nigis) Nigi) (1)

where N j) and Nj( ;) denote the numbers of vertices lying on the two sides of the
edge/path e/p (having the endpoints z and j). The summation runs over all edges
(z,7) in the respective graph. When (z,7) represents a path, then a hyper- Wiener
index, WW | can be calculated as [5]

WW =3~ N Nigd) (2)
P
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The products N jy Nj ;) represent the edge/path contribution to the global
index W/WW and are just the (z,j)-entries in the Wiener matrices (6, 7] W./, , from

which the index can be calculated as the half-sum of their entries:
1
WIWW = 2 55 Wepli (3)
i

Note that the vertices ¢ and j must be adjacent in W, , otherwise its non-diagonal
entries are zero. Relations (1)-(3) are valid only in acyclic graphs. In cycle-containing
graphs, the Wiener indices are calculated by means of the distance-type matrices
8, 9].

In order to extend the validity of the above relations to cycle-containing graphs,
Gutman has proposed [10] the Szeged indez, SZ, as a Wiener index analog. The
SZ-index is defined according to Eq. (1), but the quantities N; i) and Nj ;) are

now

Nf-(f,j) = I{UI'U € V(G) 3 D,’v < DJU}I (4)
Niij) = |{vlv € V(G); Djy < Di}| (5)

where V(G) denotes the set of vertices in a graph and D, Dj, are the topological
distances (i. e., the number of edges on a shortest path joining the vertices i and I
respectively, with a vertex v). N; ;) and N; (; j) represent the cardinalities of the sets
of vertices closer to ¢ and to j, respectively; vertices equidistant to : and J are not
counted. Thus, the SZ index is calculated by summing all the edge contributions in
the graph:
52 = Z Ni i) Ni(i.g) (6)

Since the SZ index is defined on edges, in the following it will be denoted by SZ, .

By analogy to the Wiener matrices, Szeged matrices, SZ./p, can be defined [11]
by the aid of edge/path contributions:

(SZepplii = Niing) Nigi.i) (7)
on which the Szeged indices can be calculated by
1
SZps= 5 ZZ[SZC/,;]{,' (8)
¢ -3

When the Szeged matrix is defined on paths, the index calculated on it is the

hyper-Szeged indez, SZ, [11].
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SZ. can be obtained by the Hadamard product [12] (i. e., [Ma @ My];; =
[(M];;(M)i;; ) between SZ, and A (the adjacency matrix, whose entries are 1 if

two vertices are adjacent and zero otherwise):
SZ.,=8Z,e A (9)

By analogy to the Cluj matrix [13], CTu, a Szeged unsymmetric matrix, $Z.,
was defined by Diudea [11] (cf. Fig. 1):

[SZ.)i; = Nij) (10)

SZ. is a square array of dimension n x n, in general unsymmetric. It allows the

construction of the symmetric matrices SZ. and SZ, by relation

[SZep)ii = [S24)i [SZulii (11)
and the derivation of two Wiener-type indices, as

SZesp = 3 _[S2.)i; [SZulji (12)

e/p

For tree graphs, SZ. = CJ. = W. Note that, in the above discussion, the Cluj
matrix, CJ . , was defined [14] on the shortest path (z,7).
Analytical relations for calculating the Szeged indices in paths, P,, and simple

cycles, C, , are derived [15]:

SZ.(P.) = %n(nz—-l) (13)
SZIE) = :11—8-(5n4—10n3+16n2—8n—62n+3z) (14)
S2(Ca) = rln—2) (15)
SZ,(Ca) = %n(n-—l)z"“ (n? — 2 + 4)' (16)

where z = 0 if n is even and z = 1 if n is odd.
In the present paper some extensions of the Szeged index are presented, which

account for fragments and their chemical nature.
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SZEGED PROPERTY MATRICES

By analogy to SZ,, see Egs. (4) and (10), Szeged property matrices are defined
as [16]

[52.P); = P (17)

Pius) = m QR (18)

N i)
Piig) = (H X,,) (19)

Entries in a Szeged property matrix are evaluated on the set of vertices v which
obey the Szeged index condition (see Eq. (4)). In fact, such a set of vertices can be
viewed as a fragment (i. e., a subgraph) since a molecular graph is always connected.
The summation on the right-hand side of Eq. (18) goes over all vertices of the graph
G which have the property D;, < Dj,. A similar consideration holds for the product
in Eq. (19).

Some special cases of the above definition deserve particular attention:
(a) P,=1; m=1 (classical matrix, SZ,)
(b) By =Y, Ay ; m=1/12 (mass matrix, SZ,4)
(c) X, = group electronegativities [17] (electronegativity matrix, SZ,X)

The case (a) is obvious: P, ; ;) represents the cardinality of the set of vertices v
(see above). In the case (b) A, is the atomic mass and the summation runs over all
atoms u which are represented by the same vertex v. The factor m = 1/12 indicates
that P ;) is a fragmental mass, relative to the carbon atomic mass. In the case (c)
P; (i,j) 1s just the geometric mean of vertex values X, , of group electronegativities.

In Fig. 1 the above matrices are illustrated for the graph G; (the molecular graph
of 2,3-dimethylpentane).
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Figure 1. Szeged Property Matrices; Vertex and Fragmental Indices in the Graph G;

T Gy

SZ.,A; P,=A,; m=1/12
0.000 1.250 1.250 3.583 3.583 1.250
7.083 0.000 3.583 3.583 5917 7.083
4.750 4.750 0.000 5917 5.917 4.750
£:750 2417 2.417 0.000 7.083 -4.750
2417 24Y7 1.250° 1.250 0:000 2.417

1.250 1.250 1.250 3.583 3.583 0.000
4750 1.250 1.250: 1.250 3.917 +.750

SZ.A =66.736; SZ,A =217.729

Indices are calculated on the basis of these matrices by the general relation
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(20)

Indices calculated in the cases (b) and (c) are useful for discriminating chemical graphs

which contain heteroatoms and multiple bonds.

APPLICATIONS

Two correlation tests have been performed; (a) for the vertex descriptors and (b)

for both vertex and fragmental descriptors.

(a) A dozen of cycloalkanes (Table 1) were selected for correlating their boiling points,

BP, and chromatographic retention indices, RI, with the classical hyper-Szeged index,

SZ,. For comparison, Wiener and hyper-Wiener indices are included. Statistics of

single-variable regression is shown in Table 2. In such a set, the simplest descriptor

is, of course, the number of carbon atoms, NC. Any acceptable correlation must
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surpass the correlation shown by NC . Thus, in Table 2 one can see that the corre-
lation coefficient, r, shown by the topological indices is inferior to that supplied by
NC (0.965). However, by applying the logarithmic function, all descriptors showed
increased values of 7 with a maximum for In SZ, (0.980) and a significant drop in the
standard error of estimates, s. The crude descriptor, that is NC , s far less sensitive

to logarithmation, proving a low structural information content.

Table 1. Boiling Points, BP[18] Chromatographic Retention Index, Rl and Topological Indices

BP/N RI SZ, W | WW | Graph BP/N RI SZ, w | ww

359 | 5100 | 40 3 f 26 100.9 | 7258 | 182 | 42 71

7
5 | 7

49.3 | 565.0 | 40 15 20 8 103.5 | 733.8 | 159 | 43 75

5 i o

70,7 | 621.1 | 92 29 49 9 126.4 | 812.1 | 247 61 110

5 ;
f—.l/\ 8

)

1.8 |'6279 | T9 26 39 131.0 | 830.3 | 230 58 99

80.7 | 6627 | 105 | 27 42 131.8 | 834.3 | 296 61 110

10
SHiR
11
i
L

105.0 | 723.6 | 308 | 64 122 12 136.6 | 840.4 | 447 82 162

F 10 A A 4O A




Table 2. Statistics of Single Variable Regression (y=a +bx) of Parameters from Table 1

Y X I s F

BP SZ, 0.9305 12.9426 64.5455
%Y 0.9553 10.4518 104.3108

WwW 0.9533 10.6742 99.5966
NC 0.96518 9.2434 136.1513

In SZ, 0.9840 6.2945 305.172

In W 0.9757 7.7414 198.369

In WW 0.9721 8.2956 171.454

In NC 0.9725 8.2247 174.599

RI SZ, 0.9240 44.6232 58.384

w 0.9455 37.9846 84.375

WwwW 0.9470 57.4987 86.837

NC 0.9512 36.0009 95.062

In SZ, 0.9733 26.7664 180.061

In W 0.96241 31.6953 125.545

In WW 0.9597 32.8101 116.490

In NC 0.9580 33.4446 111,757

(b) A set of 15 structures of explosives (Fig. 2 and Table 3) was tested for the
correlation of two properties: with the topological descriptors SZ. , 5Ty LA
SZyA, SZ.X and SZ,X (Table 4). Statistics of single-variable regressions and

cross validation test (“leave one out”) are shown in Table 5.

Figure 2. Molecular Formulas of Explosive Compounds
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Figure 2. (continued).

(NEL), C—=NINO,
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G1 5 G 16

Table 3. Name of Compounds in the Graphs G;-Ggs.

Graph Name DC water *10° DC air

(cm?/s) (cm?/s)

2 Trinitrotoluene 6.71 0.0639

3 2,4-Dinitrotoluene 7:31 0.0670

4 2,6- Dinitrotoluene 731 0.0670

5 1,3- Dinitrobenzene 7.94 0.0729

6 1,3,5- Trinitrobenzene 7.20 0.0679

7 Hexahydro-1,3,5-trinitro-1,3,5-triazine 715 0.0739

8 Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine 6.02 0.0629

9 N-2,4 6-Tetranitro-N-methylaniline 5.99 0.0590

10 Picric acid 703 0.0660

11 Pentaerythrytol tetranitrate 5.61 0.0570

12 Nitroglycerin 6.95 0.0700

13 Nitroguanidine 10.40 0.1018

14 Ethylene glycol dinitrate 8.72 0.0839

15 Diethylene glycol dinitrate 7.05 0.0689

16 Propylene glycol dinitrate 7.93 0.0769

Table 4. Topological Indices for Explosives (Figure 2 and Table 3).

Graph SZ, SZ, Sz A SZ,A SZX SZX

2 594 4348 601.049 4169.958 74.949 510.786

3 360 2050 378.451 2049.049 57.524 333.915

4 348 1993 366.007 1978.160 49 430 290.101

5 296 1542 303.292 1500.896 49.076 268.231

6 516 3450 509.917 3239.271 66.837 431.457

7 516 3450 555.083 3528.729 68.038 439.675

8 1156 11794 1228.833 | 12083.000 | 100.785 824.478

9 1014 10342 1022.236 | 9969.632 99.907 820.377

10 594 4348 613.896 4248.014 78.289 528.620

10k 968 11514 1083.000 | 12479.986 94 923 832.585

12 424 3677 475.729 3961.931 68 805 455.598

13 48 159 61.389 194 514 36 330 153.953

14 151 827 LIz 77 904.582 43.192 206.946

15 344 2518 408.569 2913.472 45 670 270.017

16 184 1153 214.278 1274 937 50.820 262.697
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Table 5. Statistics of Single Variable Regression: Y = a + bX for Explosives
and Cross Validation Test (Leave One Out)

No X a b r s F Fov Scv

1 | €EDgrl In SZs 0.943 | 0.0037 | 105.09

2 1/In SZ.A | 0.00073 | 0.4157 | 0.960 | 0.0031 | 155.21 | 0.951 | 0.0035
3 1/In SZ,A 0.954 | 0.0034 | 133.61

4 1/W 0.942 | 0.0038 | 102.87

5 |CDuser] In SZ, |15.60561)-1.8934| 0.973 | 0.2801 | 231.72 | 0.960 | 0.338
6 In SZ.A |16.31334|- 1.4915| 0.979 | 0.2443 | 310.57 | 0.968 | 0.302
7 In SZ,A [15.82862| -1.0766 | 0.984 | 0.2123 | 413.59 | 0.975 | 0.266
8 1/SZ,X 0.961 | 0.3321 | 160.95

Table 5 indicates a good estimative and predictive ability of the regression equa-
tions. It appears that the fragmental descriptors are more suitable for QSPR studies

than the original Wiener and Szeged indices.

CONCLUSIONS

The novel Szeged fragmental indices are defined for both acyclic and cycle-contain-
ing molecular structures. They take into account multiple bonds as well as het-
eroatoms, by means of fragmental mass or by fragmental electronegativities. The
presented correlations demonstrate their ability in modeling various molecular prop-
erties. They are promising tools in correlating the biological activity with the chemical

structures, as shown in a forthcoming paper [19].
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