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ABSTRACT. A method to compute fairly accurately the potential energy V(R) for a proton (by
treating the proton P and the attached electron e as separate entities) is developed assuming the
action of Coulomb forces between the proton, on one side, and the cations A, and B, on another
side. Here R designates a distance separating A from P. Having started from a central-field
approximation, where the electron trial wave functions are expressed in terms of a contraction
parameter 7 to measure a departure of the radial factor of those functions from its hydrogen-like
shape (0 < 1 < 1) due to an electrostatic interaction among the electrons themselves, we reduced a
quantum-mechanical eigenvalue problem of the protor motion to a series expansion of an effective
single-particle potential in the vicinity of its minimum, in the form of a three-dimensional harmonic
oscillator,

Vigt(R) = 8(R - Biin)* = Va.

Here Vo, k, and R,,in are certain parameters which are a result of the above introduced ap-
proximations when the cation A is identified with an oxygen atom. A similar series expansion
also holds for an effective single-hydrogen potential in the vicinity of its minimum, with different
values of Vg, k, and Ry. In general, for two given values of the contraction parameter, e.g. m,
and 77, where the former value is larger as compared to the latter, the two potential minima £,
and E> will take place at two different proton separation distances R; and Ry, respectively, in
such a way that |Ey| > |E2| and Ry < R». Furthermore, a theory is developed to describe the
simultaneous and independent action if both the cation A and the cation B are identified with
the neutral oxygen atoms. We are able to present various series expansions, in a vicinity of the
middle point from A to B, some of them being characterized by a single minimum, the others by
two minima, depending on a particular value of . We demonstrated that such a situation takes
place at a critical value,

Rcr = Rnu"n + bcr-

By definition, there is a single-minimum (double-minimum) series expansion in a close vicinity of

the point R = R, if the following condition is fulfilled: R < R.r (R > Rcy), respectively.



[. INTRODUCTION

In order to deal with various interactions arising among the hydrogen atom (pro-
ton P + electron e ) and an oxygen cluster (nucleus A + 8 electrons, : = 1,2, ...,8)
we had to introduce an effectice electron - nucleus interaction of a Coulomb type
through the concept of a ”contraction” parameter, Section II and the appendix A.
Effective interactions at the level of a proton are considered in Section II, Section
I1I, and the appendix B (oxygen A - proton P) . However, the interaction between
the hydrogen atom (hereafter also called a dressed proton), thus including the elec-
tron as associated with the proton (also called a bare proton) , and the oxygen
cluster requires a special treatment, Section V (oxygen - hydrogen). By collecting
all those interactions, from A on one side and B from another side, we were able to
study the potential functions in relation to the empirical separation distance, R,
Section VI (oxygen A - proton P - oxygen B). Here we discover the possibility of a
transition from a state with a single-minimum potential well, for certain values of
the mentioned separation distance, to a state with a double - minimum potential
well. Empirical evidence is included so far as it is directly implied by the present
mathematical method, Section VII.

II. A CENTRAL - FIELD APPROXIMATION AND
A CONTRACTION PARAMETER n

First we estimate a contraction parameter n assuming that 8 electrons as bound
by an oxygen nucleus are distributed quantum- mechanically among the most prob-
able regions. We expose two different methods to evaluate 7, one due to Condon

and Shortley (1951), and the other due to a Thomas - Fermi equation.

In a central-field approximation we start with a single-electron solution of the
appropriate quantum-mechanical equation as if this electron were the only subject
to the action of a Coulomb field and then we include all the mutual interactions as
acting among the electrons themselves by introducing a free parameter 7. A single

- particle electrostatic energy is then given by

Vir:)= —Z——.+ == (2.1)

with Z being in general the charge of the nucleus. Also we include in our analysis
the interactions among the electrons themselves if we replace V(r;) by an effective

single-particle potential,
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where 7 designates some contraction parameter, whose value lies in the interval
€ [0,1]. A theoretical justification for introducing this parameter is outlined in the

appendix A.

First method to evaluate 7. According to the result of Condon and Shortley

(1951), achieved in a quantum theory of various atomic spectra, we can write

Z—-N+1
where N is the number of electrons within a given atomic shell. By a ”shell” we shall
understand a configuration filled with equivalent electrons, i. e. those which have
the same principal n and orbital ¢ quantum numbers. Similarly, by a ”subshell”
we shall understand an electron pair whose z components of the spins are oriented
antiparallel one with respect to the other. Hence 7 is changed from one shell to
another. Taking N = 4 to meet the outer subshells one arrives at the value n =~ 0.6.
If we include some of the inner subshells then N might be larger and therefore n

might even be smaller.

Second method to evaluate n. A Thomas - Fermi equation, for this particular

atomic cluster, leads to the quantity n as a function of a general coordinate r,

Vers(r) = —anez, (2.4a)
n= f(4.303-r), (2.4b)

where 7 1s expressed in [;1] Depending on the subshells in question, one might
apply two limiting values, n & 0.7 (1ls-subshell) and n =~ 0.4 (2s-subshell, 2p-
subshell). :

It should be emphasized that the present method represents a combination of a
Thomas - Fermi equation (mostly used in statistical physics), on one hand, and a
Hartree - Fock method (mostly applied in relation to a perturbation theory) on the
other hand, see Fock (1976, 1984). Although a Thomas - Fermi equation, as cited
here in connection with equantion (2.4b) according to the well-known textbook of
Landau and Lifshitz (1977), implies the parameter 7 to be expressed as a function of
r, the present approach nevertheless is based on a constant n regardless of electron

subshells in question.

Using a Hartree - Fock approach we take the total wave function to be the prod-
uct of individual wave functions as they are supposed to obey the Pauli exclusion
principle. Some advantages of the present method in opposition to other methods

(perturbation or similar expansions) are enumerated in Section IIL



Next we have to solve the following equation for a radial factor of the wave

function,
-
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(2.5a)

0. (2.5b)

Here my is the electron mass, E is the energy of a bound state, A is Planck’s constant
divided by 27, see Novakovié¢ (1991). If we could solve equation (2.5b) with an
arbitrary function 7(r) then we would have obtained the entire energy spectrum

including the exact state vectors in a Hilbert space

. (Alternatively we may call

them the basis elements of the Hilbert space.) However it is the knowledge of the

proton motion, separated from electron dynamics of

a given oxygen cluster, which

we require rather than the electron dynamics itself. Therefore we shall restrict our

consideration to those electron wave functions which
values of 7.

depend on various particular

For this reason we multiply equation (2.5b) with ag .ss and introduce a dimen-

sionless length p and a dimensionless energy e,

s SURNOely . lin (2.6)
Qo.ef f Ea,ef]
A transformed equation for x = x(p) is given by
d*x 2Zx
a0 +2ex + ——
EE D) s, (2.7)
p

One should emphasize that the atomic length and
rescaled according to the prescription,

Qoeff = ;,

the atomic energy have been

(2.8)
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We can observe from equation (2.7) that the function x(p) will satisfy the same
type of equation as if the single-electron potential were given by nZe?/r. Hence,
we can solve equation (2.7) for the radial factor of the wave function R,¢(r) for any
given energy level. Thus writing ao .ss instead of ap and multiplying each R(r)
with corresponding spherical harmonics we obtain a set of orthonormal basis state
vectors in the Hilbert space,

q’n(m(Pa 9, ¢) = Rnl(p) * Ylm(ev ¢) (31)

Here m designates a magnetic quantum number.

It has to be emphasized that there will appear three important advantages while
comparing the present method with an extensive use of the perturbation theory.

(a) All calculations with basis state vectors (3.1), although dependent on a par-
ticular contraction parameter 7, will be exact and complete. For another value of
n there will appear another set of the energy eigenvalues with the corresponding
basis state vectors still exact and complete. Each particular eigenstate will be rep-
resented by a hydrogen-like wave function. Assuming an ideal separation of the
proton coordinates from those as associated with the bound electrons within an
oxygen cluster (adiabatic hypothesis) one is able to evaluate the proton potential

energy in terms of the contraction parameter 7.

(b) For the physical system composed of N electrons the total wave function
will be a sum over various products, each running over one of the single-electron
basis state vectors, antisymmetrized with respect to all the individual electron
coordinates. We use a condensed form to construct the total wave function. Let
us designate with 1,2,...2...N the set of all the electron coordinates necessary to
specify the position of a given electron in ordinary space. Hence the total wave

function may be written,

U(1,2,.,...N) = A[g([n],1) - §([n2],2) - ...

#([nil.i) - d(Inn], V), (3.2a)

1 .
A= Wv_—!zpep . P(12...i...N). (3.2b)

Here A designates an antisymmetrization operator. Clearly, the products run over

the sets of values of n, ¢, and m, each set being designated for brevity as [n;], where
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¢t = 1,2,..., N. The sum in equation (3.2b) runs over all permutations P, with ep
being the parity of a particular permutation. Here ep = +1 according to whether
the permutation is even or odd, respectively. There are N! various permutations,
hence the total wave function in equation (3.2a) is normalized to 1. For a neutral
atomic system N is equal to the electric charge of the nucleus, N = Z. If we apply
the Pauli exclusion principle by letting the electrons fill the subshells successively,
one after the other by starting from the ground state,

(1s)*(2s)*(2p)*,

then, according to a Hartree - Fock approach, the antisymmetrization operator
when applied to the wave functions in (3.2a,b) is equivalent to the successive filling
of the lowest-order energy levels. Actually, the ordering of subshells and shells,
according to the Pauli exclusion principle, when the subshells and shells are filled
one after the other starting from the ground state upwards, is equivalent to the
antisymmetrization operator. This particular advantage comes from the full or-
thogonality among the basis state vectors in equations (3.2a,b), separately over
the radial factors which depend on n,£ and 7, while separately over the spherical
harmonics which depend on ¢, m. The spin quantum number s, = 1/2, or —1/2 is
taken into account through the specific ordering of the above listed subshells. This
approach is a reasonable approximation for single-particle operators, as there will
appear various interactions of the kind: the proton P - electrons ¢, and the electron
e - electrons 7, where : = 1,2,...,8. Actually, by following the present method we
take into account explicitly only the direct integrals, whereas the exchange integrals
do not contribute, so far as the single-particle operators are in question. In physical
terms, this is equivallent to saying that no exchange takes place either between the
proton P and the electrons ¢, or the electron e and the electrons ¢, see Figure 1(a).
This certainly is not absolutely correct, but represents a reasonable approach so far
as the proton dynamics, within the framework of an adiabatic approximation, is in

question.

We might describe the present approach as being semiclassical. On one hand it is
a very good approximation so far as the proton does not exchange the coordinates
with the electrons ¢ = 1,2,...8, as they are not identical particles in a quantum-
mechanical sense. On the other hand, it is also a fair approximation so far as the
electron e does not exchange its coordinates with those of the electrons i, where
i = 1,2,...8, because their energy states are so very much different mutually that
there will appear an almost vanishingly small contribution coming from the overlap
integrals. In other words, the treatment here undertaken is in a full agreement

with classical electrostatics in a sense that an electron charge - density, although
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expressed by a quantum-mechanical probability, is a subject of the laws of classical
electrostatics.

(c) Any interaction between the proton outside the oxygen cluster and the elec-
trons within the oxygen cluster, by following the method of Condon and Shortley
(1951), can be treated as a single-particle operator arising from the electron density
- charge distributions according to the prescription just outlined. In this particular
case the proton P - electron 7 (as attached to a given oxygen cluster) electrostatic

potential energy

(;‘2

r[P1]

V(r[Pi]) = (3.3)

can be treated without the use of any perturbation expansion as it would be neces-
sary if the trial wave functions were not corrected for a mutual interaction arising
among the electrons. It must be emphasized that the interaction (3.3) rescales
according to equations (2.4a) and (2.8),

2

A 1€

Vers(rlPil) = oo, (3.4

ape) = AP (3.5)
Qo,ef f

Concluding the present section, one can easily observe various rescalings after the
use of the effective single-electron electrostatic potential energy (3.4). The atomic
length rescales like ap /7, the atomic energy rescales like n? E,, whereas the potential
involving the electrons of the oxygen cluster with other particles outside this cluster
rescales like nV(r[Pt]), according to equations (3.3) and (3.4). Therefore one may
say that energy terms in general will be decreased (hence a word ”contraction” in
the introduced definition), whereas the atomic lengths will be increased.

Having in mind all three items mentioned under (a) to (c) we assume that the
present approach is established as a reasonable approximation so far as the distance
R, separating A from P in Figure 1(a,b), is much larger compared to the outer
electron subshells, i. e.

R=AP>> 2.
2

In practical terms we have to evaluate all definite integrals wherever they appear

with the basis state vectors (3.1) and (3.2) and then replace the current variable

according to the first of equations (2.8),

R nR
@ —

ap ag
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where R designates a fixed distance. If numerical values of n were selected carefully
then one should expect a reasonable approximation for the electrostatic potential
energy of the bare proton in a Coulomb field as being generated by the oxygen
cluster (nucleus plus its eight electrons). Actually we are interested in proton
dynamics where the kinetic energy of the proton has a primary importance in view
of the external electric field which is generated by a cation A, on one side, and
a cation B, on the other side. This quantity will depend on R. We assume that
the electron cloud e as bound to the proton P (hence a dressed proton) maintains
a spherical charge distribution all the time. Therefore such a cloud, according to
the laws of electrostatics, will not produce any electric field inside its own sphere.
However, there will be a specific oxygen - hydrogen interaction, as a function of the

same R, due to the spherical electron density - charge distribution.

In passing over to the next section we have to emphasize the importance of eval-
uating the contraction parameter from the first principles as accurate as possible.
Unfortunately such a sophisticated approach is not available for the time being in
any simple and reasonable manner. We can gain a fair amount of conviction at
this point by following the arguments of the appendix A where this problem is

considered in connection with the helium - atom problem.

IV. OXYGEN - PROTON INTERACTION IN
TERMS OF A CONTRACTION PARAMETER 7

Using a general vocabulary we shall say that a charge - density distribution of
an electron cloud, as defined by Fock (1976, 1984), is a quantity given by

Density = —e z [ ()%, (4.1)

where the sum runs over all quantum numbers which are necessary to describe the
many-electron system in a complete manner. Here 7 designates the space coordi-
nate, to be specified according to a particular model, but will actually depend on
the selected origin of the coordinate system. The present mathematical model con-
sists of evaluating the exact potential energy at the position of the proton P, along
an atomic chain AP, as being generated by one given nucleus and eight surrounding
electrons. A similar definition holds for the atomic line PB.

In general

V(A,P) = [%—Z/”—([—;%

/ Sy e Lt

=1
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where Z = n; + n2 + ... designates the total number of electrons, ny in the first
subshell, n; in the second subshell, etc. These two sums indicated in equation (4.2)
run from 1 to n; and ng, respectively. A density of the electron charge taken at
the point 77, of the ith electron, depicted in Figure 1(a) is given by

P(Fi) = |¢nlm(ri,6i, ¢i)|2- (43)

In general ¢ is the proton charge to be taken identical with e (the electron charge
being —e). In addition, d7; is a volume element defined by

dr; = T?drisine,’deid(ﬁi. (4.4)

Finally, r[Pi] is a distance separating the ith electron from the proton P, in Figure

1(a),

r[Pi] = \/R? + 12 — 2Rricost, (4.5)

where the Az axis is parallel to the AP...B direction.  Each electron wave function
is a product of two factors, one being a function of the dimensionless coordinate,
with the same notation as in the appendix B,

T3

agp

It should be noticed that we employ the same Greek letter for a charge density
and the dimensionless coordinate. Another factor contains spherical harmonics for

various values of the orbital and magnetic quantum numbers.

We consider a model with the following electron configuration,
(1s)*(2s)*(2p)".

The integration over ¢; from 0 to 27 leads to a factor 27, while the integration over
6; from 0 to 7 requires a special attention. All definite integrals can be reduced to
one of the following two expressions. If r; runs from 0 to R, then

/ sinb;d; "l (R + 7‘.') — (R — 7‘,') i 3 (4 6(1)
VR? + 1% — 2Rr;cosb; Rr; R '
If however r; runs from R to infinity then the above integral runs over to

(ri + R) = (7‘,’ = R) =4 2 (46b)

Rr; i



14

Figure 1. (a) Relative coordinates of the oxygen nucleus, introduced as a
cation A, one of its electrons ¢ and the proton P; (b) The cation A, one of its
electrons 7, the proton P and its electron e. R is a distance separating the nucleus
A from P, Ry, is a distance separating the nucleus of the cation A from the nucleus

of the cation B.
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A similar method, in connection with the many-body problem, was considered by
Sokolov, Ternov, and Zhukovskii (1984). Therefore, the electrostatic potential en-
ergy of the proton due to the oxygen cluster, in terms of a dimensionless coordinate
€ = R/ay, is given by

62

Viid ) = —HB(g), (4.7)

ap

where, after a straightforward calculation, one arrives at
2 12
F(€) = (16 - E)exp( - 16¢) + [_{ +52 + 1286+

5 3 3
256€2 + TR @]emp( = sg) ~ (4.8)

This result holds for a single-electron potential V/(r;) if there were no mutual
interactions among the electrons. If however one includes those interactions then
equations (4.7) and (4.8) will be transformed as follows. According to Section II,
an effective single - electron potential Ves¢(r;) will generate a similar expression,
where one has to replace the dimensionless coordinate £ with 7-£ and simultaneously

replace e /ag with 1 - €2/ag, n being a contraction parameter. Therefore,

Vess(A,P) =1- Z—OF(nﬁ)- (4.9)

In general terms, two various curves representing the quantity Vess(A, P) in
equation (4.9), one for 7, another for 73, with n; > 72, are depicted in Figure 2.
It may be observed that |E;| > |E;|, while at the same time the positions of the
minima obey an opposite relationship, namely, R; < R».

Each curve has a series expansion in the vicinity of its minimum, with a shape of

a three-dimensional harmonic oscillator,

Vers(R) = k(R — Rumin)? — Vo. (4.10)

These expansions are characterized by
( a) Example n = 0.5, Vp = 0.93[eV], k = 5.52[eV - A72], Rmin = 1.26[4].
( b) Example = 0.6, Vo = 1.12[eV], k = 9.54[eV - A72], Rmin = 1.05[4].
( c) Example g = 0.7, Vo = 1.31[eV], k = 15.16[eV - A™2], Rmin = 0.90[4].
( d) Example n =1, Vo = 1.87[eV], k = 44.19[eV - A~2], Rpnin = 0.63[4].
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Figure 2. Potential energy of a proton V(R) as generated by the oxygen cluster
(nucleus +8 electrons) plotted qualitatively as a function of the A — P separation

distance R, for two different values of the contraction parameter 7, where 71 > ;.

Notice also that |E;| > |E2| , while Ry < Ra.
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V. OX¥GEN A - ELECTRON ¢ AND
OXYGEN A - HYDROGEN P + ¢ INTERACTIONS
AND A DIPOLE MOMENT OF THE O-H SYSTEM

The oxygen A - electron e interaction can be written,

V(A’e) = V(O)(A’e) oo 1/(1)(’416)a (5.1a)
Vigs (4, €) — B /%Ldr, (5.1b)

1)013
VmAe)—eZ / X8 8OP 41 -y 0, 0)ar, (510

r(ze]
Y(r,0,¢) = 3/2 ezp( — ;—0)y00(9,¢), (5.2a)
Ao
X(ri,0i,6:i) = Rue(ri) - Yem(6i, 6:), (5.2b)
s = (7‘.‘,9,‘,(}3,'), pi=p (7‘, 0, 45) (5.2c)

In equation (5.1a) the two terms designate respectively an electrostatic interac-
tion energy V(o) arising from the oxygen nucleus and the electron e as attached to
the proton P and a similar interaction energy V/;) arising from the eight electrons
as attached to the oxygen cluster and the electron e, Figure 1(a) and Figure 1(b).

The first contribution is readily written as

2
Vio)(4,e) = SO—G(O)(O, (5.3a)

Gy(§) = (? - = 8) CSL‘p( - 2{) - -?— (5.3b)

The second term in equation (5.1a) can be evaluated by using two separate and
yet independent computing stages.

First stage to compute ozygen A - electron e interaction. We fix the variables
r,6, ¢ in order to integrate over the variables r;, 8;, ¢;, i. e. over dr;. As indicated

this includes also the factor i

rlie]
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in equation (5.1c) which i1s a part of the indicated integration. We then obtain a
dimensionless function similar to F(£) as given by equation (4.8). In this particular
function we have to make the following replacements. The electron e in Figure
1 (lower view), being attached to the proton P, will play the part of the proton
P with —e replacing e. Hence, by replacing £ whenever it appears with another
variable p; defined by the equation,

r[Ae]

B =y rlde] =1, (5.4)

we will be able to perform the integration over dr. Therefore, equation (5.1c) goes

over to 5
é

Viy(A,e) = ;;G(l)(ﬁ), (5.5a)

G (©) = [ May(on)lw(r,6,0)dr, (5.50)

p1 = al—o\/R2 + r2 4+ 2Rrcosé. (5.5¢)

It should be emphasized that (r,8, ¢) in equations (5.5a,b) is identical to that
in equation (5.2a). During this integration we identify the Az axis with the A — e
direction in Figure 1(a,b). This completes the First stage.

Second stage to compute ozygen A - electron e interaction. Next we go over
to compute the introduced quantity M(;)(p1). Having done the replacements as
prescribed in the First stage, by which the electron e must formally take the place
of the proton P in Figure 1(b), and having subtracted a pure proton - nucleus

interaction, we arrive at

M5l = f—] ~ Flpi), (5.6)

where F'(p;) is given by equation (4.8) with p; instead of {. Clearly, the replacement
of —e by e (since the electron has replaced the proton in the present operation) is
visible in a total change of sign in equation (5.6). Hence the full meaning of the

expression introduced in equation (5.6),

8 2
Muy(p1) = TIRR (16 -+ Z)exp( ~ 16p1)

N L +i]
i e T T
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exp( — 8p1) + (5.7a)

16p7"

¥
p1 = V€ + p? + 2Lpcosh, p = r[a -} (5.7b)
0

The integration over dr, i. e. over p and @ in equation (5.5b), with the help of
equations (5.7a,b) will not produce any confusion over using the same letter p as
in Section IV and the appendix B. Notice that r[Pe] in equation (5.7b) is identical
with r in Figure 1(a). This completes the Second stage.

Putting together the interactions oxygen nucleus A - electron e and electrons
(: = 1,2,...,8) - electron e we can write an oxygen - hydrogen (i.e. the dressed
proton) interaction in the form,

2
Vos(A,H) =1 - — F(n€) + G(oy(n) + Gy(né), (5.8)

where 7 is approximately the same contraction parameter as in Sections II to IV. A
huge number of definite integrals on which G(;)(£) depends are given explicitly in

Part two of the present manuscript. These various curves representing the quantity

Vers(A, H)

in equation (5.8) are similar to the curves already depicted qualitatevily in Figure

2.

Each curve has a series expansion in the vicinity of its minimum, similar to
equation (4.10). These expansions are characterized by

o

(a) Example n = 0.5, Vo = 3.34[eV], k = 21.48[eV - A72], Rmin(H) = 1.05[4].
(b) Example n = 0.6, Vo = 4.01[eV], k = 37.13[eV - A~?], Rpmin(H) = 0.88[4].
(c) Example n = 0.7, Vp = 4.67[eV], k = 58.96[eV - A™2], Ruin(H) = 0.75[4].
(d) Example n =1, Vp = 6.68[eV], k = 171.91[eV - A~2], Rmin(H) = 0.53[4].

Clearly, here we find a possibility to discover a fundamental difference in the
interpretation of R(+) as compared to R(H). While, on one hand, R(+) is a
genuine distance separating the bare proton from the oxygen nucleus (i. e. the
quantity R) then, on the other hand, a similar quantity R(H) can be considered
as the most probable position of the hydrogen atom (hence a dressed proton). By
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subtracting these two effective interactions one obtains the purely oxygen atom A

- single electron e interaction. Hence,

Vess(A,e) = Vess(A, H) — Vess(A, P). (5.9)

The potential function in (5.9) does not show any minimum, but reveals an
overlap in passing from one value of 7 to another. In particular, this overlap is
in the interval R € [0.35,0.55] [;1] For this reason one might introduce a dipole
moment i of the OH physical system connecting those two points through the
relation,

p = q[R(+) — R(-)], (5.10)

where ¢ is the charge of the proton, R(—) is a position of the most probable neg-
ative charge - density concentration. It should be emphasized that this difference,
according to example (c), equation (4.10), n = 0.7, Rmin = R(+) = 0.90[.:1], lies
in the interval

[0.35, 0.55] [A]. (5.11)

This interval may account for a large fraction of the OH dipole moment, see Section
VII.

V1. PARTICLE MOTION ASSOCIATED WITH
A DOUBLE - MINIMUM POTENTIAL WELL

By collecting the results of Section IV and Section V we can estimate the poten-
tial energy which is responsible for the motion of the bare light particles (protons,

deuterons) as coming from both oxygen clusters. Therefore,

Vers(A,P) + Vess(P,B) =

62
1 = [F@e) + F(n(ea - ©)] (6.1a)
0
o D2, (6.1b)
Qo

We considered how the effective potential function in equations (6.1a,b) behaves
as if the contraction parameter n and the empirical separation distance R, change

simultaneously and independently one from the other.
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(1) According to equation (4.10), if n = 0.6, Rpin = 1.05[;1], then the potential
function in equation (6.1a,b) would be represented by a single-minimum potential

well, Viingte(R), up to a certain value of

R < Rcr — len T bcr,

but would be represented by a double-minimum potential well, Vj,us1e(R), for

R > Rcr = Rmin + bcr

depending on 7. One arrives at the following expansions, in [eV], while R in [;1] :
Vaingte(R) = —1.827 4+ 0.256( R — 1.26)%*+

26.476(R — 1.26)* + 54.244(R — 1.26)°, (6.2a)

Vaouste(R) = —1.798 — 0.037(R — 1.27)%+
24.380(R — 1.27)* + 50.563(R — 1.27)°, (6.2b)

where the critical values are within the interval
B¢ (128, 127] [A&], (6.2c)
2b., € [0.42, 0.44] [A]. (6.2d)

(2) According to equation (4.10), if n = 0.7, Rynin = 0.90 [;1] , then the potential
function has two expansions similar to those in equations (6.2a,b,c,d). We find,

Viingte(R) = —2.131 4 0.406(R — 1.08)%+

57.225(R — 1.08)* + 159.581( R — 1.08)°, (6.3a)

Vaouste(R) = —2.092 — 0.132(R — 1.09)*+

51.974(R — 1.09)" + 147.014(R — 1.09)°, (6.3b)
R, € [1.08, 1.09] [A4], (6.3¢)
2b., € [0.36, 0.38] [A]. (6.3d)

Empirically, there is a simple relationship connecting an equilibrium distance

R,2, which separates the nucleus of A from the nucleus of B , with an escape
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radius of the bare proton, R.,., and the elementary length b, a property to be
associated with the O, H...O, physical system,

Riz = 2R.,. + 2b. (6.4)

Here R.,. is associated with the first orbital motion of the bare proton in a
threedimensional harmonic oscillator, whereas b depends on external forces which
act on the O, H...O; physical system. We expect therefore that b is a result of a
mutual interaction between this particular physical system and its environment.
For the present model we can estimate this quantity on the basis of equations

(6.2a,b,c,d) and (6.3a,b,c,d). The result is

26=0.78—-06-n [A4], (6.5)

which varies between 0.36 and 0.44 [,21], provided that n varies between 0.6 and
0.7. Mass-dependent effects, although small, will take place, but they have been
neglected in the present paper.

VII. EMPIRICAL EVIDENCE AND CONCLUSIONS

There are three crucial points where the present mathematical model can be
tested and justified: a dissociation energy D, an equilibrium distance Req, and a
dipole moment p(OH). We shall compare our results with those in: Coggeshall
(1950), Lippincot (1953 -1957), Reid (1959), Totsuji and Matsubara (1994).

The value of D, when reduced to a single diatomic molecule OH amounts to
approximately 4.36 [eV] . The present model yields a spectrum of values for the po-
tential minimum, depending on the contraction parameter 7, ranging from 3.34 [eV]
(for » = 0.5 which is close to the value, according to the approach of Condon and
Shortley (1951), 4.67 [eV] (for n = 0.7, a value which follows from the application of
a Thomas - Fermi equation), according to equation (5.8), examples (a) to (¢). The
radius of the lowest orbit of a proton around oxygen varies from 1.05 [;1] (in the
former case) to 0.75 [.:{] (in the latter case), according to equation (5.8), examples
(a) to (c).

An empirical value for the dipole moment u(OH ) is quoted by Coggeshall (1950),
1.51 - 1078 electrostatic units. We have no exact algorithm how to calculate this
important physical quantity. However, one can achieve a reasonably successful
estimation of the order of magnitude involved in a distance separating the center
of the positive charge, R(+), from a similar center of the negative charge, R(—).

Indeed, by implying classical arguments one may associate the quantity R(+) with
the point of the actual position of the bare proton if charge distributions were
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evaluated according to the principle of Fock (1976, 1984), Section II. whereas the
quantity R(—) would really correspond to a distorted picture as it would be obtained
by the electron cloud surrounding the bare proton. Here, an attractive force on the
electron by the oxygen nucleus is slightly more effective than the repulsive force
on the proton by the same nucleus. Hence, there would appear a difference in the
separation distance, the nucleus versus the bare proton as compared to the nucleus

versus the electron. Using obvious notations, one can write,

R(+) = R(_) = Rmin [Veff(OhP)] = Rmin [Veff(ohe)]' (71)

Therefore, the introduced difference, in all cases considered, equals anything
from 0.35 up to 0.55 [;1] This may numerically account for a large fraction of
the observed value of the dipole moment. In addition, this interval is close to
the numerical Bohr radius of the outer subshells associated with the oxygen atom,
namely a 2s-subshell and a 2p-subshell, whose effective radii may be estimated

from,
4ao

a(2s) = a(2p) ~ = e [0.38,0.44] [A]. (7.2)
With Z = 8, n = 0.6 up to n = 0.7, equation (7.2) leads to the above mentioned

interval.

It is also important to emphasize that the present result for the quantity Rmin(+),
which is identical to Rn,in, may be compared to a semiempirical analysis of Reid
(1959) who quotes

R.(OH) =~ 1.092[4]; R.(OD) ~ 1.082[4]. (7.3)

In the present analysis we find a fair agreement between our figures and those

of Reid (1959).

A similar method oriented to evaluate the shape of the potential function as
associated with the motion of an electron in a mutual field as coming from three
sources: a cation A, with a charge Z4, a bare proton P, with a charge Zp, and
another cation B, with another charge Zp, which satisfy the condition of an electric
neutrality, Z4 + Zp + Zp = 1, was developed by Totsuji and Matsubara (1994).
However, this method of Totsuji and Matsubara does not take into account a specific

charge - density concentration as coming from various electron shells and subshells.
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APPENDIX A: PERTURBATION EXPANSIONS AND
A JUSTIFICATION FOR THE INTRODUCTION
OF A CONTRACTION PARAMETER 7

Let us expose our method on a simple physical system like helium (nucleus + 2
electrons) with a total Hamiltonian in the form

2
W= H 4o+ —s (A1)

T12

where the first two operators include the kinetic and potential energies of two
electrons, while the third operator is just an electron - electron interaction. All
perturbation expansions will involve the matrix elements of the type,

2

€ ! I pl pt ! !

< n1n2€]€2m1m2|r—|n1n2€1 oMMy >, (A2)

12
where the introduced quantum numbers refer to the unperturbed stationary states
of the two electrons in question. Here one can expand the electron - electron

interaction in terms of Legendre polynomials as follows,

oo
DI
o e+1
7
2. e

- Pe(cosb). (A3)

In equation (A3) € designates an angle closed by those two electrons, see Baker
et al (1990), Davis (1963), Edmonds (1960), Scfiff (1976), Whittaker and Watson
(1952), all quoted in Part two of the present paper. The symbols < and > are used

to indicate respectively the smaller or larger among the position vectors,

T1; T2.

The Legendre polynomial can be written as a product over similar polynomials
which are associated with either one or another electron motion. Using an obvious

notation we write

cosf = cosbycosb, + sinbysinbycos(dy — ¢2), (A4)

— (¢ +m)!

P (z1)P;" (z2) - cosm(¢y — ¢2), (A5)

4
Pi(z) = Pe(x1)Pe(az) +2 3 1)
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s =-cosl, w;=0c080y, 2y =cosl,. (A6)

Here P;"(z) is an associated Legendre polynomial. By doing so we can write the
relevant matrix element as a sum over various Legendre polynomials. A general
conclusion is based on the orthogonality property of the corresponding eigenvectors.
Furthermore one can introduce the expansion,

P[(fl:) = Z Cen zl—Zn, (A7)

with certain expansion coefficients c;,. We know that the zeroth-order coefficient

is given by
(20)!
Ceo = m (A8)
Using equations (A5) to (A8) we conclude that only the term with ¢ = 0 con-
tributes, whereas all the remaining terms give no contribution. Hence an electron

- electron interaction in equation (A1) is reduced to the expression

s

in order to compete the original electron - nucleus interaction in such a way as if

each term is replaced by

2 2 B

Sy BT (A9)
T s T1
2 2 ..

Tt = (A10)
T2 r> T2

So we see that n will take a numerical value larger than 0 but still smaller than
1. This completes a justification for the introduction of a contraction parameter n
mentioned in Section II, in connection with the best electron trial wave functions. It
should be emphasized that the present exposition may also be extended to include a
physical system like oxygen (nucleus + 8 electrons), with 7 still being between 0 and
1. For a special mathematical approach to the helium - atom problem one should
follow the genuine expositions of Davis (1963) and Baker et al (1990), already cited
in Part two of the present research paper.
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APPENDIX B: HYDROGEN - LIKE RADIAL
WAVE FUNCTIONS IN TERMS OF 7

Here we bring the radial wave functions for the three lowest-order stationary
states (1s,2s,2p) which are frequently used in the present paper. These are,

Rio(p) =2[ L] - ezp( ~n2p), (B1)

Rao(p) = '% [?‘f] 3/2(1 - nZp/2)-

ezxp( —nZp/2), (B2)
1 [nZq3/2
Ralif) =221 g0,
21(p) W ao] nZp
ezp( —nZp/2), (B3)
r[Az] r;
nat L B4
e - (B4)
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