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ABSTRACT. By considering a modified version of generalized uncertainty relations in 

the model of a three-dimensional dynamic quantum vacuum characterized by a variable 

energy density, new relevant perspectives of analysis of the thermodynamics of 

Schwarzschild black holes are explored. The dependence of temperature and entropy of a 

Schwarzschild black hole with the variable quantum vacuum energy density is analyzed. 

Finally, the thermodynamics of Schwarzschild black holes surrounded by quintessence is 

studied in a picture where quintessence, and thus dark energy, is the manifestation of 

more elementary quantum vacuum energy density fluctuations as well as a state 

parameter of the vacuum.  

 

Keywords: generalized uncertainty relations, three-dimensional dynamic quantum 

vacuum, variable quantum vacuum energy density, Schwarzschild black holes.  

 

 

 

INTRODUCTION 

 

One of the most relevant and appealing consequences of quantum gravity theories lies 

in the existence of a minimal measurable length that naturally generates a modification of the 

Heisenberg position-momentum uncertainty relations at the Planck scale. Different proposals 

of modification of the Heisenberg uncertainty relations exist which introduce a minimal-

length scenario (MAGGIORE, 1993; KEMPF et al., 1995; ADLER and SANTIAGO, 1999; 

SCARDIGLI, 1999; CAPOZZIELLO et al., 2000; CARR, 2015). These modified versions of the 

uncertainty principle, which are known today with the expression Generalized Uncertainty 

Principle (GUP), introduce important perspectives in various areas of theoretical physics. In 

particular, they reveal themselves as an adequate instrument in order to study the 

thermodynamic properties of black holes.  

The influence of GUP at the Planck scale in the changes of the thermodynamic 

properties of a black hole has been analysed in different contexts, such as in reference to the 

formation of mini black holes in a consistent way with doubly special relativity (ALI, 2012; 
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PRAMANIK et al.,  2015), or in the exploration of the properties of quantum black holes in the 

picture of a deformed version of Wheeler-DeWitt equation (BINA et al., 2010; MAJUMDER, 

2011). The impact of GUP in the dynamics of the universe manifests itself also in determining 

a correction to the relation between entropy and area, which turns out to be universal for all 

black objects (FAIZAL and KHALIL, 2015) and in the context of black hole complementarity 

(CHEN et al., 2014). Furthermore, it has been recently shown that a peculiar high-order 

generalized uncertainty principle produces a modification of temperature, entropy, and 

capacity of a semi-classical black hole (HASSANABADI et al., 2019a).  

 In this paper, the main purpose is to investigate how, in the model of a three-

dimensional (3D) dynamic quantum vacuum (DQV) proposed recently by the author, a 

special form of extended generalized uncertainty relations can be formulated which leads to a 

new re-reading of the thermodynamics of Schwarzschild black holes. This work is structured 

in the following way. In section 2, after a review of the fundamental features of the model of 

the 3D DQV, we enunciate our extended generalized uncertainty relations. In section 3, after 

analysing the dependence of the mass of a Schwarzschild black hole with the variable 

quantum vacuum energy density, we explore how the thermodynamic quantities of a 

Schwarzschild black hole, namely temperature and entropy, are modified by the extended 

generalized uncertainty relations in the 3D DQV model and we discuss their physical 

meaning. In section 4 we explore the consequences of the generalized uncertainty relations of 

the 3D DQV in the treatment of the thermodynamics of Schwarzschild black holes in the 

presence of quintessence. In section 5 we summarize the main results of the paper and we 

analyse the relation of our model with other relevant alternative approaches which invoke the 

existence of minimal lengths and with current models of thermodynamics of black holes 

surrounded by quintessence matter.  

 

 

THE GENERALIZED UNCERTAINTY RELATIONS IN THE THREE-

DIMENSIONAL DYNAMIC QUANTUM VACUUM 

 

By considering, for mirror-symmetric states, the deformed canonical commutation 

relations expressed by 

 

[�̂�, �̂�] = 𝑖ℏ (1 + 𝛽𝑙𝑝
2 �̂�

2

ℏ2
)                                         (1) 

where �̂�2 = ∑ �̂�𝑘
2

𝑘  and �̂�, �̂� represent the high-energy position and momentum operators, in 

PETRUZZIELLO and ILLUMINATI (2021) a generalized uncertainty relation has been proposed, 

which predicts the existence of a minimal length, of the form 

 

∆𝑥∆𝑝 ≥
ℏ

2
[1 + 𝛽𝑙𝑝

2 (
∆𝑝

ℏ
)
2

]        (2) 

where 𝛽 is a deformation parameter expressing the space-time fluctuations at the Planck scale 

and 𝑙𝑝 is the Planck length. The generalized uncertainty relation (2) has an important impact 

as regards the explanation of relevant aspects of quantum measurement in a picture where the 

decoherence rate turns out to be minimal in the deep quantum regime below the Planck scale 

and maximal further than the mesoscopic regime. Moreover, it leads to the recover of the 

standard quantum mechanical dynamics of a more general approach in the limit 𝛽 → 0.  

In the model of the 3D DQV proposed by the author in several recent works 

(FISCALETTI and SORLI, 2014a, 2014b, 2016a, 2016b, 2016c, 2017, 2018; FISCALETTI, 2015, 

2016a, 2016b, 2020) one has the possibility to introduce a new form of generalized 

uncertainty relations where the quantity [1 + 𝛽𝑙𝑝
2 (

∆𝑝

ℏ
)
2

] appearing in equation (2) can get a 
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new interpretation, at a deeper level, in terms of the fundamental variable energy density 

which characterizes the 3D DQV. Our model of 3D DQV has the merit to derive ordinary 

matter, dark matter and dark energy as special states of the 3D quantum vacuum, defined by a 

Planckian metric and a variable quantum vacuum energy density, where time does not exist as 

a primary physical reality but emerges as a mathematical parameter measuring only the 

sequential numerical order of material changes and, in this picture, the variable energy density 

can be associated to a deformation of the geometry of the underlying background which, at a 

fundamental level, is expressed by generalized uncertainty relations.  

The fundamental 3D DQV is defined by a ground state which is characterized by the 

maximum value of the quantum vacuum energy density given by the Planck energy density 

 

𝜌𝑝𝐸 =
𝑀𝑃𝑙𝑐

2

𝑙𝑝
3 = 4,641266 ∙ 10113𝐽/𝑚3            (3) 

(where 𝑀𝑃𝑙 is Planck’s mass, 𝑐 is the light speed and pl  is Planck’s length). The appearance 

of ordinary baryonic matter derives from an opportune excited state of the 3D quantum 

vacuum which is characterized by an opportune diminishing of the quantum vacuum energy 

density associated to elementary reduction-state (RS) processes of creation/annihilation of 

virtual particle/antiparticle pairs, given by relation 

 

∆𝜌𝑞𝑣𝐸 ≡ 𝜌𝑝𝐸 − 𝜌 =
𝑚𝑐2

𝑉
              (4) 

with respect to the ground state, depending on the amount of mass 𝑚 and the volume V  of 

the particle. Each excited state of the DQV can be described by a wave function 𝐶 = (
𝜓
𝜙
) at 

two components satisfying a time-symmetric extension of the Klein-Gordon quantum 

relativistic equation  

 

0
0

0
=









−
C

H

H
               (5) 

where ( ) 
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  and ∆𝜌𝑞𝑣𝐸 is the change of the quantum vacuum 

energy density, provides a mathematical description of each excited state of the DQV in a 

picture where the quantum potential of the vacuum 
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emerges as the ultimate entity guiding the occurrence of the processes of creation or 

annihilation events in space and gives origin to a fundamental non-local character of the 

background (FISCALETTI and SORLI, 2014b, 2017; FISCALETTI, 2016b). 

Dark energy cannot be considered as a primary physical reality, but its action is an 

emerging process that is generated by opportune quantum vacuum energy density fluctuations 
DE

qvE  on the basis of relation 
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The dark energy density (7), which can be associated to the action of a cosmological 

constant, is responsible of the curvature of space-time in the sense that the geometry of the 3D 

quantum vacuum can be described by an underlying quantized metric  


 dxdxgsd ˆˆ2 =               (8) 

where  

0000
ˆ1ˆ hg +−= , 

1111
ˆ1ˆ hg += , ( )22

2

22
ˆ1ˆ hrg += , ( )33

22

33
ˆ1sinˆ hrg +=  ,  hg ˆˆ =  for       (9) 

and, at the order ( )2rO ,  
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        (10) 

(FISCALETTI, 2016a, 2016b, 2020; FISCALETTI and SORLI, 2016a, 2016b, 2016c). 

Now, in our model, we assume that the term [1 + 𝛽𝑙𝑝
2 (

∆𝑝

ℏ
)
2

] appearing in the 

formalism (2) of the generalized uncertainty relations finds its origin in more fundamental 

properties, namely the fluctuations of the quantum vacuum energy density (4). As a 

consequence, the quantity (
∆𝑝

ℏ
)
2

 in our model becomes 
∆𝜌𝑞𝑣𝐸

2 𝑉2

ℏ
2𝑐2

 and therefore, in the 3D DQV, 

one can introduce extended generalized uncertainty relations, which are valid at the Planck 

scale, of the form 

 

∆𝑥∆𝑝 ≥
ℏ

2
(1 + 𝛽𝑙𝑝

2 ∆𝜌𝑞𝑣𝐸
2 𝑉2

ℏ
2𝑐2

)           (11) 

 

In equation (11) the parameter 𝛽 is a fluctuating quantity which is associated with space-time 

fluctuations at the Planck scale, in affinity with the treatment developed in quantum foam 

scenarios such as loop quantum gravity and cellular automaton interpretation of quantum 

mechanics (AMELINO-CAMELIA, 2002; ROVELLI, 2010; FISCALETTI, 2014; ‘T HOOFT, 2001a, 

2001b; 2013, 2016; LICATA, 2020).   

The generalized uncertainty relations (11) have the merit to introduce new scenarios of 

connection between great theories of the XXI century which are based on quantum foams, 

loops and holographic features at the Planck scale. In particular, in our approach of 3D DQV, 

the granular features of the geometry of the fundamental background can be formulated in 

terms of the following relation 

 

𝑔𝜇𝜈(�⃗�) =
ℏ
2𝑐2

𝛽∆𝜌𝑞𝑣𝐸
2 𝑉2

𝜂𝜇𝜈           (12) 

where 𝜂𝜇𝜈 is the metric of the 3D flat space. On the basis of equation (12), it follows that the 

features regarding the density of loops of loop quantum gravity (ROVELLI, 2004) can be 

associated with the quantity 𝛽𝑙𝑝
2 ∆𝜌𝑞𝑣𝐸

2 𝑉2

ℏ
2𝑐2

 depending on the variable energy density as well as 

the parameter 𝛽, and therefore can be seen as the consequence of fundamental processes 

concerning the virtual particles of the 3D DQV.  

The generalized uncertainty relations (11) provide a unifying treatment of 

microphysics of elementary particles and macrophysics of black holes in terms of a 

generalized Compton wavelength of the form 
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𝑅𝐶
′ = 𝑅𝑆

′ = √(
𝛽ℏ𝑐

∆𝜌𝑞𝑣𝐸𝑉
)
2

+ (𝛽𝑙𝑝2
∆𝜌𝑞𝑣𝐸

⬚ 𝑉⬚

ℏ⬚𝑐⬚
)
2

        (13) 

in a picture where three different regimes (super-Planckian, trans-Planckian and sub-

Planckian limits) can be derived as upper manifestations of specific behaviours of the 

quantum vacuum energy density fluctuations. In light of equation (13), it follows that the 

crucial connecting loop between microphysics and macrophysics is represented by elementary 

objects of the Planck scale, which are generated by the geometry of the variable quantum 

vacuum energy density. These elementary objects are sub-Planckian black holes having the 

size of the order of the Compton wavelength. Moreover, the generalized uncertainty relations 

lead also to a unifying treatment of the Casimir effect and cosmological wormholes between 

two distant regions of the universe, in a picture where the curvature and scale factor of the 

universe appear as emerging manifestations of the elementary fluctuations of the quantum 

vacuum energy density as well as of the fluctuating parameter appearing in the generalized 

uncertainty relations (FISCALETTI and SORLI, 2023). 

 

 

FROM THE GENERALIZED UNCERTAINTY RELATIONS TO THE MODIFIED 

RELATIONS REGARDING THE TEMPERATURE AND THE ENTROPY OF 

SCHWARZSCHILD BLACK HOLES 

 

Black holes can be considered the most mysterious and suggestive objects existing in 

the universe. As the properties of black holes began to emerge in the 1960s, researchers noted 

that black holes had some similarities to thermodynamic systems, most notably that any mass 

falling into a black hole would increase the area of the black hole, and its event horizon. In 

particular, Hawking showed that black holes must have a real temperature proportional to 

their surface gravity and an entropy proportional to the square of the black hole’s mass and 

the area of the event horizon and that on the basis of the second law of thermodynamics, their 

surface areas do not decrease. With these revolutionist premises, today the exploration of 

some suitable features of black holes, such as Hawking temperature and mass functions, leads 

to the conclusion that these systems do not violate the first law of thermodynamics. The 

proportionality of the entropy of black holes with the area of the event horizon would then 

have led in recent times to the holographic principle, the key capable of opening the access 

door to quantum gravity, according to which all the information contained in a volume of 

space is encoded on the surface of that volume. By inextricably unifying the speed of light, 

Newton’s gravitational constant, and Planck’s constant, Bekenstein and Hawking showed that 

the entropy of the universe remains constant or increases because entropy lost from regions 

outside black holes is always compensated by an equal or greater increase in the black hole’s 

entropy. On the basis of the Bekenstein and Hawking studies, black holes are 

thermodynamical systems that emit radiation, and thus they must evaporate by means of what 

is now called Hawking radiation (BARDEEN et al., 1973; BEKENSTEIN, 1973; HAWKING, 1975). 

In fact, an interesting property of Schwarzschild black holes is that, as a consequence of their 

negative heat capacity, will lose energy giving origin to the so-called black hole evaporation, 

even if the final configuration is still an open question because the evaporation of a black hole 

is associated with a corresponding disappearance of all the information inside the black hole 

(UNRUH and WALD, 2017; MATUBARO DE SANTI and SANTARELLI, 2019). Possible alternatives 

to this scenario lie in the possibility that the evaporation of the black hole occurs until its 

length reaches the Planck scale, or the information results in a final burst, or that black holes 

quantum tunnels into a white hole, or even that no black hole ever forms (for a review of these 

perspectives, see, for example, the references UNRUH and WALD, 2017; BIANCHI et al., 2018). 
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Recently, the issue of finding the quantum corrections to the black hole temperature, 

entropy, and capacity has received much attention (see, for example, GANGOPADHYAY and 

DUTTA, 2018; VAGENAS et al., 2018; HASSANABADI et al., 2019b). Here we want to open new 

scenarios of interpretation of the thermodynamics of black holes (and in particular, 

Schwarzschild black holes), in the picture of the generalized uncertainty relations of the 3D 

DQV considered in section 2. In this regard, before all, by starting from the generalized 

uncertainty relations (11), if one makes the substitution 

 

∆𝑝 → ∆𝑝 +
ℏ
2𝑐2

𝑙𝑝
2∆𝑝

            (14) 

one finds 

 
2𝑀𝐴𝐷𝑀

𝑟
=

2∆𝑝

𝑐∆𝑥
             (15) 

where the quantity 

 

𝑀𝐴𝐷𝑀 =
∆𝜌𝑞𝑣𝐸𝑉

𝑐2
(1 +

ℏ
2𝑐2

𝛽𝑙𝑝
2∆𝜌𝑞𝑣𝐸

2 𝑉2
)          (16) 

can be defined as the Arnowitt-Deser-Misner mass in the 3D DQV. The Arnowitt-Deser-

Misner mass (16) leads to define a quantum-modified Schwarzschild metric of the form 

 

𝑑𝑠2 = 𝐹(𝑟)𝑐2𝑑𝑡2 − 𝐹(𝑟)−1𝑑𝑟2 − 𝑟2𝑑Ω
2
         (17) 

where 

 

𝐹(𝑟) = 1 −
2𝐺∆𝜌𝑞𝑣𝐸

3𝑉3

𝑀𝑃𝑙
2𝑐8𝑟

−
2ℏ2𝐺

𝛽𝑙𝑝
2𝑐2𝑟∆𝜌𝑞𝑣𝐸𝑉

         (18) 

The metric (17) – equipped with equation (18) – has important consequences in the sense that 

it leads to the following expression for the horizon size 

 

𝑟𝐻 = 𝑅𝑆
′ =

2𝐺∆𝜌𝑞𝑣𝐸
3𝑉3

𝑀𝑃𝑙
2𝑐8

+
2ℏ2𝐺∆𝜌𝑞𝑣𝐸𝑉

𝛽𝑙𝑝
2∆𝜌𝑞𝑣𝐸𝑉𝑐2

          (19) 

which, depending on the specific values of the quantum vacuum energy density, becomes 

 

𝑟𝐻 ≈

{
 
 

 
 

2𝐺∆𝜌𝑞𝑣𝐸
3𝑉3

𝑀𝑃𝑙
2𝑐8

              𝑖𝑓 ∆𝜌𝑞𝑣𝐸𝑉 ≫ 𝑀𝑃𝑙𝑐
2

2𝐺𝑀𝑃𝑙

𝑐2
(1 +

ℏ
2𝑐2

𝛽𝑙𝑝
2𝑀𝑃𝑙

2 𝑐2
)     𝑖𝑓 ∆𝜌𝑞𝑣𝐸𝑉 ≈ 𝑀𝑃𝑙𝑐

2

2𝐺ℏ2

𝛽𝑙𝑝
2𝑐6
                   𝑖𝑓  ∆𝜌𝑞𝑣𝐸𝑉 ≪ 𝑀𝑃𝑙𝑐

2 

        (20) 

The first expression of (20), namely 

 

𝑟𝐻 ≈
2𝐺∆𝜌𝑞𝑣𝐸

3𝑉3

𝑀𝑃𝑙
2𝑐8

            (21) 

regards the super-Planckian regime and corresponds to a regime which coincides with the 

standard Schwarzschild radius. The intermediate expression regards the trans-Planckian limit, 

which has a minimum of order 𝑙𝑝. The last expression is linked to the sub-Planckian regime 

and corresponds to the Compton wavelength.  

On the basis of the metric (17), equipped with equation (18), and taking into account 

the treatment in CARR et al. (2015) and CARR (2018), one finds the following results as 

regards the thermodynamics of the black hole solutions in the three limits considered above 

(namely super-Planckian, trans-Planckian and sub-Planckian limits (FISCALETTI and  SORLI, 

2023): 
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𝑇 =
𝑀𝑃𝑙

2

8𝜋𝑀𝐴𝐷𝑀
⬚ ≈

{
  
 

  
 

𝑀𝑃𝑙𝑐
2

8𝜋∆𝜌𝑞𝑣𝐸𝑉[1−𝛽(
𝑀𝑃𝑙𝑐

2

∆𝜌𝑞𝑣𝐸𝑉
)

2

]

     𝑖𝑓 ∆𝜌𝑞𝑣𝐸𝑉 ≫ 𝑀𝑃𝑙𝑐
2

𝑀𝑃𝑙

8𝜋[1+𝛽/2]
      𝑖𝑓 ∆𝜌𝑞𝑣𝐸𝑉 ≈ 𝑀𝑃𝑙𝑐

2

∆𝜌𝑞𝑣𝐸𝑉

4𝜋𝛽𝑐2[1−(∆𝜌𝑞𝑣𝐸𝑉/𝑀𝑃𝑙𝑐
2)
2
/𝛽]
    𝑖𝑓  ∆𝜌𝑞𝑣𝐸𝑉 ≪ 𝑀𝑃𝑙𝑐

2 

     (22) 

On the basis of equation (22), the usual Hawking temperature derives from the large 𝑀 =
∆𝜌𝑞𝑣𝐸𝑉

𝑐2
 limit while, during the phase of evaporation of the black hole, the temperature reaches 

a maximum at around 𝑇𝑃𝑙 and then decreases to zero as 
∆𝜌𝑞𝑣𝐸𝑉

𝑐2
→ 0.  

In the second part of this section, we want to show how the quantity (21) assumes an 

important role in determining the properties of a Schwarzschild black hole, and particularly 

the features of its thermodynamics in the picture of the generalized uncertainty relations (11). 

In the regime where relation (21) holds, the function (18) appearing in the quantum-modified 

Schwarzschild metric (17), becomes 

 

𝐹(𝑟) = 1 −
2𝐺∆𝜌𝑞𝑣𝐸

3𝑉3

𝑀𝑃𝑙
2𝑐8𝑟

           (23) 

and thus, the metric (17) reads 

 

𝑑𝑠2 = (1 −
2𝐺∆𝜌𝑞𝑣𝐸

3𝑉3

𝑀𝑃𝑙
2𝑐8𝑟

) 𝑐2𝑑𝑡2 − (1 −
2𝐺∆𝜌𝑞𝑣𝐸

3𝑉3

𝑀𝑃𝑙
2𝑐8𝑟

)
−1

𝑑𝑟2 − 𝑟2𝑑Ω
2
     (24) 

By following PERIVOLAROPOULOS (2017), the quantity (21) leads to the following value for 

the maximum mass of the black hole 

 

𝑀𝑚𝑎𝑥 =
∆𝜌𝑞𝑣𝐸 𝑚𝑎𝑥 

3𝑉3

4𝜋2𝑀𝑃𝑙
2
𝑐6

            (25) 

By invoking near-horizon geometry considerations, in the generalized uncertainty relation 

(11) one can set ∆𝑥 = 2𝜋𝑟𝐻, namely  

 

∆𝑥 =
4𝜋𝐺∆𝜌𝑞𝑣𝐸

3𝑉3

𝑀𝑃𝑙
2𝑐8

            (26) 

Moreover, one can utilize the temperature expression of any massless quantum particle near 

the horizon of a Schwarzschild black hole 

 

𝑇 =
𝑐

𝑘𝐵
∆𝑝              (27) 

in order to investigate the Hawking temperature of the black hole. By substituting equations 

(26) and (27) into the generalized uncertainty relations (11), one thus obtains 

 
4𝜋𝐺∆𝜌𝑞𝑣𝐸

3𝑉3

𝑀𝑃𝑙
2𝑐9

𝑘𝐵𝑇 =
ℏ

2
(1 + 𝛽𝑙𝑝

2 ∆𝜌𝑞𝑣𝐸
2 𝑉2

ℏ
2𝑐2

)         (28) 

namely 

𝑇 =
ℏ𝑀𝑃𝑙

2𝑐9

8𝜋𝑘𝐵𝐺∆𝜌𝑞𝑣𝐸
3𝑉3

(1 + 𝛽𝑙𝑝
2 ∆𝜌𝑞𝑣𝐸

2 𝑉2

ℏ
2𝑐2

)         (29) 

namely 

𝑇 =
𝑀𝑃𝑙

2𝑐4

∆𝜌𝑞𝑣𝐸
2𝑉2

𝑇0 (1 + 𝛽𝑙𝑝
2 ∆𝜌𝑞𝑣𝐸

2 𝑉2

ℏ
2𝑐2

)          (30) 

where 

 

𝑇0 =
ℏ𝑐3

8𝜋𝑘𝐵𝐺𝑀𝑏ℎ
             (31) 
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is the ordinary Hawking temperature of the black hole having mass 𝑀𝑏ℎ. The quantity (30) 

can be defined as a modified Hawking temperature of Schwarzschild black holes described by 

the metric (24), in the picture of the 3D DQV model. The modified Hawking temperature (30) 

can also be expressed as a function of the maximum mass of the black hole (25): 

 

𝑇 =
∆𝜌𝑞𝑣𝐸𝑉

𝑀𝑚𝑎𝑥𝑐2
𝑇0 (1 + 𝛽𝑙𝑝

2 ∆𝜌𝑞𝑣𝐸
2 𝑉2

ℏ
2𝑐2

)          (32) 

Equation (32) implies that the term 
∆𝜌𝑞𝑣𝐸𝑉

𝑀𝑚𝑎𝑥𝑐2
 associated with the quantum-modified 

Schwarzschild metric, as well as the term 𝛽𝑙𝑝
2 ∆𝜌𝑞𝑣𝐸

2 𝑉2

ℏ
2𝑐2

 associated with the deformation of the 

background at the Planck scale, modify the standard expression of the Hawking temperature. 

In particular, it must be remarked that if the following constraint holds 

 

𝛽𝑙𝑝
2 ∆𝜌𝑞𝑣𝐸

3 𝑉3

𝑀𝑚𝑎𝑥ℏ2𝑐4
→ 0            (33) 

then the Hawking temperature reduces to the value: 

 

𝑇 =
𝑀𝑃𝑙

2𝑐4

∆𝜌𝑞𝑣𝐸
2𝑉2

𝑇0            (34) 

which means that its value is affected by a sort of dilatation determined by the fluctuations of 

the quantum vacuum energy density. Instead, if the quantum vacuum energy density 

fluctuations reach the regime of the maximum value of the mass of the black hole (27), 

namely if  

 

∆𝜌𝑞𝑣𝐸𝑉 → 𝑀𝑚𝑎𝑥𝑐
2            (35) 

then the Hawking temperature may be written in the form 

 

𝑇 = 𝑇0 (1 + 𝛽𝑙𝑝
2 ∆𝜌𝑞𝑣𝐸

2 𝑉2

ℏ
2𝑐2

)           (36) 

which, in the regime 𝛽 → 0, reduces to the standard value 

 

𝑇 = 𝑇0              (37) 

In the light of equation (36), in the limiting case where the quantum vacuum energy 

density fluctuations are close to the maximum mass value, the modified Hawking temperature 

reaches very large values compared to the usual one (while the standard Hawking temperature 

is recovered in the limit 𝛽 → 0). Instead, in the regime where the quantum vacuum energy 

density fluctuations are smaller than the critical mass value, then the temperature of the black 

hole has to be computed by using the general equation (32).  

Next, we determine the Schwarzschild black hole entropy by considering the first law 

of thermodynamics which is defined in the form of: 

 

𝑆 = 𝑉 ∫
𝑑∆𝜌𝑞𝑣𝐸

𝑇
            (38) 

namely, by substituting relation (29): 

 

𝑆 = 𝑉 ∫
8𝜋𝑘𝐵𝐺∆𝜌𝑞𝑣𝐸

3𝑉3𝑑(∆𝜌𝑞𝑣𝐸)

ℏ𝑀𝑃𝑙
2𝑐9(1+𝛽𝑙𝑝

2
∆𝜌𝑞𝑣𝐸
2 𝑉2

ℏ
2𝑐2

)

          (39) 

namely 

 

𝑆 =
8𝜋𝑘𝐵𝐺𝑉

4

ℏ𝑀𝑃𝑙
2𝑐9

∫
∆𝜌𝑞𝑣𝐸

3𝑑(∆𝜌𝑞𝑣𝐸)

(1+𝛽𝑙𝑝
2
∆𝜌𝑞𝑣𝐸
2 𝑉2

ℏ
2𝑐2

)

           (40) 
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By performing the integration, one obtains the following mathematical formulation for 

the generalized entropy of a Schwarzschld black hole in the 3D quantum vacuum: 

 

namely 

 

𝑆 =
8𝜋𝑘𝐵𝐺𝑉

2ℏ

𝛽𝑙𝑝
2𝑀𝑃𝑙

2𝑐7
[∆𝜌𝑞𝑣𝐸

2 −
ℏ
2𝑐2

𝛽𝑙𝑝
2𝑉2

𝑙𝑛 (𝛽𝑙𝑝
2 ∆𝜌𝑞𝑣𝐸

2 𝑉2

ℏ
2𝑐2

+ 1)]       (41) 

Here, taking account the expression of the Bekenstein-Hawking entropy for the 

Schwarzschild black hole, given by relation 

 

𝑆0 = 4𝜋𝑘𝐵
𝑀𝑏ℎ

2

𝑀𝑃𝑙
2            (42) 

equation (41) may also be expressed as follows: 

 

𝑆 =
2𝑘𝐵𝐺ℏ

𝛽𝑙𝑝
2𝑐3

𝑆0 −
𝑘𝐵𝐺ℏ

3

𝜋𝛽2𝑙𝑝
4𝑀𝑃𝑙

2𝑐5
𝑙𝑛 (𝛽𝑙𝑝

2 ∆𝜌𝑞𝑣𝐸
2 𝑉2

ℏ
2𝑐2

+ 1)        (43) 

In the light of relation (43), one can say that when 𝛽 → 0 the generalized entropy of the black 

hole in the 3D DQV, at the second order, may be approximated as 

 

𝑆 =
2𝑘𝐵𝐺ℏ

𝛽𝑙𝑝
2𝑐3

𝑆0 −
𝑘𝐵𝐺ℏ∆𝜌𝑞𝑣𝐸

2 𝑉2

𝜋𝛽𝑙𝑝
2𝑀𝑃𝑙

2𝑐7
+

𝑘𝐵𝐺

𝜋𝑀𝑃𝑙
2𝑐9

∆𝜌𝑞𝑣𝐸
4 𝑉4

ℏ
        (44) 

The physical meaning of equation (44) is that the value of the generalized entropy of the black 

hole overcomes important modifications with respect to the standard Bekenstein-Hawking 

entropy, which are caused by the fluctuations of the quantum vacuum energy density as well 

as the parameter 𝛽 appearing in the generalized uncertainty relations. And, according to 

equation (44), the modified entropy of a Schwarzschild black hole turns out to be 

characterized by important changes with respect to the standard value also when the 

fluctuations of the quantum vacuum energy density are negligible. In fact, for ∆𝜌𝑞𝑣𝐸 → 0, the 

entropy (43) becomes 

 

𝑆 =
2𝑘𝐵𝐺ℏ

𝛽𝑙𝑝
2𝑐3

𝑆0             (45) 

which means that also under the constraint of negligible energy density fluctuations, the 

entropy of the black hole overcomes a sort of dilatation with respect to the standard 

Bekenstein-Hawking entropy, with a factor of dilatation given by the quantity 
2𝑘𝐵𝐺ℏ

𝛽𝑙𝑝
2𝑐3

 

dependent on the parameter describing the deformation of the geometry of the background as 

well as on fundamental constants of physics.  

It is appealing also to formulate the entropy of the black hole (43) in terms of the area 

of the horizon. In fact, since the area of the horizon, being given by 𝐴 = 4𝑙𝑝
𝑆

𝑘𝐵
, is 

 

𝐴 =
8𝐺ℏ

𝛽𝑙𝑝𝑐3
𝑆0 −

4𝐺ℏ3

𝜋𝛽2𝑙𝑝
3𝑀𝑃𝑙

2𝑐5
𝑙𝑛 (𝛽𝑙𝑝

2 ∆𝜌𝑞𝑣𝐸
2 𝑉2

ℏ
2𝑐2

+ 1)        (46) 

taking account that 𝐴0 = 16𝜋
𝐺2𝑀𝑏ℎ

2

𝑐4
, by substituting (46) into (43), one obtains 

 

𝑆 =
𝑘𝐵ℏ

2𝜋2𝐺𝛽𝑀𝑃𝑙
2 𝑙𝑝

2𝑐3
𝐴0 −

𝑘𝐵𝐺ℏ
3

𝜋𝛽2𝑙𝑝
4𝑀𝑃𝑙

2𝑐5
𝑙𝑛 (𝛽𝑙𝑝

2 ∆𝜌𝑞𝑣𝐸
2 𝑉2

ℏ
2𝑐2

+ 1)       (47) 

 

Here, one can observe that, in the limit 𝛽 → 0, at the first order in a Taylor expansion, relation 

(47) implies the following formulation of the area theorem in the 3D DQV: 
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𝑆 =
𝑘𝐵ℏ

2𝜋2𝐺𝛽𝑀𝑃𝑙
2 𝑙𝑝

2𝑐3
𝐴0 −

𝑘𝐵𝐺ℏ∆𝜌𝑞𝑣𝐸
2 𝑉2

𝜋𝛽𝑙𝑝
2𝑀𝑃𝑙

2𝑐7
          (48) 

while, for ∆𝜌𝑞𝑣𝐸 → 0, one obtains 

 

𝑆 =
𝑘𝐵ℏ

2𝜋2𝐺𝛽𝑀𝑃𝑙
2 𝑙𝑝

2𝑐3
𝐴0            (49) 

Finally, let us see how the heat capacity of the black hole is modified by the generalized 

uncertainty relations (11). In this regard, by utilizing the following relation 

 

𝐶 = (
1

𝑉

𝑑𝑇

𝑑(∆𝜌𝑞𝑣𝐸)
)
−1

            (50) 

one obtains 

 

𝐶 = (
1

𝑉

𝑑[
ℏ𝜋𝑀𝑃𝑙

2𝑐9

2𝑘𝐵𝐺∆𝜌𝑞𝑣𝐸
3𝑉3

(1+𝛽𝑙𝑝
2
∆𝜌𝑞𝑣𝐸
2 𝑉2

ℏ
2𝑐2

)]

𝑑[∆𝜌𝑞𝑣𝐸]
)

−1

          (51) 

namely 

 

𝐶 = (
1

𝑉
[−

3ℏ𝜋𝑀𝑃𝑙
2𝑐9

2𝑘𝐵𝐺∆𝜌𝑞𝑣𝐸
4𝑉3

(1 + 𝛽𝑙𝑝
2 ∆𝜌𝑞𝑣𝐸

2 𝑉2

ℏ
2𝑐2

) +
𝜋𝛽𝑙𝑝

2𝑀𝑃𝑙
2𝑐7

𝑘𝐵𝐺ℏ∆𝜌𝑞𝑣𝐸
2𝑉⬚

])
−1

      (52) 

namely 

 

𝐶 = (−
3ℏ𝜋𝑀𝑃𝑙

2𝑐9

2𝑘𝐵𝐺∆𝜌𝑞𝑣𝐸
4𝑉4

−
𝜋𝛽𝑙𝑝

2𝑀𝑃𝑙
2
𝑐7

2𝑘𝐵𝐺ℏ∆𝜌𝑞𝑣𝐸
2𝑉2
)
−1

         (53) 

namely 

 

𝐶 = −
2𝑘𝐵𝐺ℏ∆𝜌𝑞𝑣𝐸

4𝑉4

3ℏ2𝜋𝑀𝑃𝑙
2𝑐9+𝜋𝛽𝑙𝑝

2𝑀𝑃𝑙
2
𝑐7∆𝜌𝑞𝑣𝐸

2𝑉2
         (54) 

Taking account of the standard expression of the heat capacity in terms of the variable 

quantum vacuum energy density 𝐶0 = −8𝜋𝑘𝐵
∆𝜌𝑞𝑣𝐸

2𝑉2

𝑐4𝑀𝑃𝑙
2 , one has 

 

𝐶 =
𝐺ℏ∆𝜌𝑞𝑣𝐸

2𝑉2

12ℏ2𝜋2𝑐5+4𝜋2𝛽𝑙𝑝
2
⬚

⬚
𝑐3∆𝜌𝑞𝑣𝐸

2𝑉2
𝐶0          (55) 

Equation (55) turns out to be compatible with the fact that the collapse of a black hole ends as 

soon as the heat capacity function tends to zero. In the light of relation (55), this physical 

situation occurs when ∆𝜌𝑞𝑣𝐸 → 0, which corresponds to the situation of constant mass, called 

also remnant mass, in the standard interpretation.  

 

 

EFFECTS OF THE GENERALIZED UNCERTAINTY RELATIONS IN THE 

THERMODYNAMICS OF SCHWARZSCHILD BLACK HOLES WITH 

QUINTESSENCE 

 

 On the basis of the observational data, we know that the universe is characterized by a 

phase of accelerated expansion which is associated whit a gravitationally self-repulsive dark 

energy. In this regard, a possible candidate for dark energy is the so-called quintessence 

matter, which provides a spatially inhomogeneous component of negative pressure to the 

cosmological evolution of the universe and is defined by the equation of state 
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𝑃 = 𝜔𝜌𝐷𝐸             (56) 

where 𝑃 is the pressure, 𝜌𝐷𝐸 is the energy density and −1 < 𝜔 < −1/3. Since dark energy 

should compose 70% of the energetic content of the universe, the perspective is opened that 

quintessence matter is present all over the universe, and thus also around black holes.  

 The idea that the quantum fluctuations of the background metric of spacetime 

determine the deformation of a Schwarzschild black hole was originally proposed in a 

germinal work by KAZAKOV and SOLODUKHIN (1994). Then, in 2003 KISELEV explored the 

Schwarzschild metric of black holes by considering the action of the quintessence field onto 

the background. More recently, several authors have analysed the thermodynamics of 

Schwarzschild black holes and the action of the quintessence associated with their 

background (in this regard, the literature is very broad, we can cite for example the references 

KISELEV, 2003; MA et al., 2007; CHEN et al., 2008; VARGHESE and KURIAKOSE, 2009; ZHANG 

et al., 2009; SALEH et al., 2011; YI-HUAN and ZHONG-HUI, 2011; FERNANDO, 2012, 2013a, 

2013b; THOMAS et al., 2012; AZREG-AINOU and RODRIGUES,  2013; THARANATH and 

KURIAKOSE, 2013; FENG et al., 2014; THARANATH et al., 2014; AZREG-AINOU, 2015; HUSSAIN 

and ALI,  2015; MALAKOLKALAMI and GHADERI, 2015; GHADERI and MALAKOLKALAMI, 

2016; GHOSH, 2016; TOSHMATOV et al., 2017).  

By seeking inspiration from KAZAKOV–SOLODUKHIN’s work (1994) and KISELEV’s 

approach (2003), NOZARI et al. (2020) have recently studied the behaviour of Schwarzschild 

black holes surrounded by quintessence finding how the quantum fluctuations of the 

background metric and the quintessence can influence the accretion parameters of the black 

hole, in the picture of a central 2-dimensional sphere with a radius of the order of the Planck 

length where the radial component of the 4-velocity and the proper energy density of the 

accreting fluid turn out to have a finite value. In this section, we want to explore the effects of 

the generalized uncertainty relations (11) of the 3D DQV model in the thermodynamics of 

Schwarzschild black holes surrounded by quintessence, in a picture where the quintessence is 

ultimately associated with more elementary fluctuations of the 3D DQV.   

 By following the treatment of Luftuoglu, Hamill and Dahbi in LUTFUOGLU et al. 

(2021), a deformed Heisenberg algebra expressed by relation 

 

[𝑥, 𝑝] = 𝑖ℏ[1 + 𝛽𝑝2]            (57) 

where 𝛽 is a small non-negative deformation parameter that is proportional to the Planck 

length, leads to the following relation between the temperature and the horizon radius of a 

Schwarzschild black hole surrounded by quintessence: 

 

𝑇 =
2𝑟𝐻

𝜋𝛽
(1 +

3𝛼𝜔𝑞

𝑟𝐻
3𝜔𝑞+1)(1 + √1 −

𝛽

4𝑟𝐻
2)         (58) 

where 𝜔𝑞 is the quintessential state parameter, and 𝛼 is the positive normalization factor that 

depends on the density of quintessence matter. Relation (58) implies that for 𝛽 = 0 the 

temperature of the black hole reduces to the Hawking temperature of Schwarzschild black 

hole surrounded by the quintessence in the Heisenberg uncertainty principle limit 

 

𝑇 =
1

4𝑟𝐻𝜋
(1 +

3𝛼𝜔𝑞

𝑟𝐻
3𝜔𝑞+1)           (59) 

Moreover, one must remark here that, in the regime of −1 < 𝜔𝑞 < −1/3, the quintessence 

successfully explains the accelerated expansion of the universe.  

Now, in our approach of 3D DQV based on the generalized uncertainty relations (11), 

the perspective is opened to provide a new suggestive re-reading of the thermodynamics of 

Schwarzschild black holes in the presence of quintessence. In fact, here we take account of 

the expression (24) regarding the horizon size, and we consider that the parameter 𝛽 of the 
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Luftuoglu, Hamill, and Dahbi model is replaced with the quantity 𝛽𝑙𝑝
2 ∆𝜌𝑞𝑣𝐸

2 𝑉2

ℏ
2𝑐2

. Furthermore, 

above all, on the basis of equation (7), we assume that dark energy and thus quintessence 

matter do not represent primary physical realities but are the manifestation of more 

elementary quantum vacuum energy density fluctuations and this means that equation (56) 

reads 

 

𝑃 =
35𝜔𝑞𝑣𝐸𝐺𝑐

2

2𝜋ℏ4𝑉
(
𝑉

𝑐2
∆𝜌𝑞𝑣𝐸

𝐷𝐸 )
6

           (60) 

where here 𝜔𝑞𝑣𝐸 is interpreted as the state parameter of the 3D DQV describing the 

fluctuations of the quantum vacuum energy density which determine the negative pressure 

responsible for the accelerated expansion of space. In other words, in our approach, a black 

hole surrounded by quintessence means to deal with a black hole where the surrounding 

region is characterized by quantum vacuum energy density fluctuations mimicking the action 

of quintessence, thus allowing an explanation of the acceleration of space. As a consequence, 

our model equation (58) regarding the relation between the temperature and horizon radius of 

a Schwarzschild black hole is replaced by the following equation expressing the relation 

between the temperature of a Schwarzschild black hole and the variable energy density 

 

𝑇 =
4𝐺∆𝜌𝑞𝑣𝐸

3𝑉3

𝜋𝑙𝑝
2
∆𝜌𝑞𝑣𝐸
2 𝑉2

ℏ2𝑐2
𝑀𝑃𝑙

2𝑐8
(1 +

3𝛼𝜔𝑞𝑣𝐸

(
2𝐺∆𝜌𝑞𝑣𝐸

3𝑉3

𝑀𝑃𝑙
2𝑐8

)

3𝜔𝑞𝑣𝐸+1
)(1 − √1 −

𝑙𝑝
2
∆𝜌𝑞𝑣𝐸
2 𝑉2

ℏ2𝑐2

16
𝐺2∆𝜌𝑞𝑣𝐸

6𝑉6

𝑀𝑃𝑙
4𝑐16

)    (61) 

namely 

 

𝑇 =
4𝐺∆𝜌𝑞𝑣𝐸

⬚𝑉⬚ℏ2𝑐2

𝜋𝑙𝑝
2𝑀𝑃𝑙

2𝑐8
(1 +

3𝛼𝜔𝑞𝑣𝐸

(
2𝐺∆𝜌𝑞𝑣𝐸

3𝑉3

𝑀𝑃𝑙
2𝑐8

)

3𝜔𝑞𝑣𝐸+1
)(1 −√1 −

𝑙𝑝
2𝑀𝑃𝑙

4𝑐14

16ℏ2𝐺2∆𝜌𝑞𝑣𝐸
4𝑉4
)    (62) 

By following UNRUH and WALD (2017), the generalized uncertainty relations (11) lead to the 

following constraint regarding the maximal temperature sustained by the black hole: 

 

𝑇 ≤
1

𝜋√𝛽𝑙𝑝
2
∆𝜌𝑞𝑣𝐸
2 𝑉2

ℏ2𝑐2

[1 + 3𝛼𝜔𝑞𝑣𝐸 (𝛽𝑙𝑝
2 ∆𝜌𝑞𝑣𝐸

2 𝑉2

4ℏ2𝑐2
)
−
3𝜔𝑞𝑣𝐸+1

2

]       (63) 

In the absence of the fluctuations of the quantum vacuum energy density which mimic the 

action of quintessence matter, one obtains that the temperature of black hole takes values in 

the range 

 

0 ≤ 𝑇 ≤
1

2𝜋√𝛽𝑙𝑝
2
∆𝜌𝑞𝑣𝐸
2 𝑉2

ℏ
2𝑐2

           (64) 

It must be remarked here that the state parameter 𝜔𝑞𝑣𝐸 of the DQV appearing in 

equations (61)-(63) gives rise to different possible behaviours of the event horizon radius in 

dependence of their specific value. The parameter 𝜔𝑞𝑣𝐸 has the values −1 < 𝜔𝑞𝑣𝐸 < −1/3 

for a de Sitter horizon which causes the acceleration, and −1/3 < 𝜔𝑞𝑣𝐸 < 0 for the 

asymptotically flat solution. In particular, for 𝜔𝑞𝑣𝐸 = −2/3 two event horizon radii emerge 

given by 

𝑟𝑖𝑛 =
1−√8𝑀𝛼

2𝛼
             (65) 

𝑟𝑜𝑢𝑡 =
1+√8𝑀𝛼

2𝛼
             (66) 
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for 𝜔𝑞𝑣𝐸 = −1/3 only one horizon radius appears 

 

𝑟𝐻 =
2𝑀

1−𝛼
             (67) 

which, taking account of the general relation (21) regarding the horizon size of a 

Schwarzschild black hole, implies that this case occurs when the following constraint is 

satisfied: 

 
2𝐺∆𝜌𝑞𝑣𝐸

3𝑉3

𝑀𝑃𝑙
2𝑐8

=
2𝑀

1−𝛼
            (68) 

namely 

 

∆𝜌𝑞𝑣𝐸
3𝑉3 =

2𝑀𝑀𝑃𝑙
2𝑐8

2𝐺(1−𝛼)
           (69) 

Finally, when 𝜔𝑞𝑣𝐸 = −1 one obtains the de Sitter-Schwarzschild solution if the following 

condition is satisfied 

 

𝛼 =
Λ

3
                                                                                                                                      (70) 

where the cosmological constant may be here assimilated to opportune fluctuations of the 

quantum vacuum energy density on the basis of equation (7).  

 As a consequence of the peculiar features of the event horizon radius in 

correspondence with the specific values of the quintessential state parameter, one derives 

opportune behaviours of the temperature of the Schwarzschild black hole surrounded by 

vacuum energy density fluctuations mimicking the action of quintessence matter in the 3D 

DQV model based on the generalized uncertainty relations (11). In particular, for 𝜔𝑞𝑣𝐸 = −1, 

the generalized uncertainty relations (11) determine a modification of the temperature of the 

Schwarzschild black hole surrounded by these peculiar quantum vacuum energy density 

fluctuations, given by relation 

 

𝑇 =
4𝐺∆𝜌𝑞𝑣𝐸

⬚𝑉⬚ℏ2𝑐2

𝜋𝑙𝑝
2𝑀𝑃𝑙

2𝑐8
(1 − 12𝛼

𝐺2∆𝜌𝑞𝑣𝐸
6𝑉6

𝑀𝑃𝑙
4𝑐16

) (1 − √1 −
𝑙𝑝
2𝑀𝑃𝑙

4𝑐14

16ℏ2𝐺2∆𝜌𝑞𝑣𝐸
4𝑉4
)                               (71) 

In this situation, the quantum vacuum energy density fluctuations satisfy relation 

 

1

√3𝛼
≥

2𝐺∆𝜌𝑞𝑣𝐸
3𝑉3

𝑀𝑃𝑙
2𝑐8

≥

√𝛽𝑙𝑝
2
∆𝜌𝑞𝑣𝐸
2 𝑉2

ℏ2𝑐2

2
                                                                                              (72) 

namely 

 
𝑀𝑃𝑙

2𝑐7𝑙𝑝
⬚

4𝐺ℏ√3𝛼
≥ ∆𝜌𝑞𝑣𝐸

2𝑉2 ≥ √𝛽                                                                                                   (73) 

and thus, the temperature has values in the range 

 

0 ≤ 𝑇 ≤
4−3𝛼𝛽𝑙𝑝

2
∆𝜌𝑞𝑣𝐸
2 𝑉2

ℏ2𝑐2

4𝜋√𝛽𝑙𝑝
2
∆𝜌𝑞𝑣𝐸
2 𝑉2

ℏ2𝑐2

                                                                                                          (74) 

Here one can note that, in the regime of negligible fluctuations of the quantum vacuum energy 

density (and thus in a regime where the generalized uncertainty relations do not assume an 

important role), the temperature has no superior limit value. However, in general, in the 

presence of significant fluctuations of the quantum vacuum energy density, the deformation of 

the geometry of the background leads to the existence of an upper limit value for the 
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temperature, which is just fixed by these fluctuations and by the deformation parameter. 

These concepts provide a new key to reading the results obtained in (LUTFUOGLU et al., 2021).  

Instead, for 𝜔𝑞𝑣𝐸 = −2/3, the black hole temperature has the following form 

 

𝑇 =
4𝐺∆𝜌𝑞𝑣𝐸

⬚𝑉⬚ℏ
2𝑐2

𝜋𝑙𝑝
2𝑀𝑃𝑙

2𝑐8
(1 − 4𝛼

𝐺∆𝜌𝑞𝑣𝐸
3𝑉3

𝑀𝑃𝑙
2𝑐8

   ) (1 − √1 −
𝑙𝑝
2𝑀𝑃𝑙

4𝑐14

16ℏ2𝐺2∆𝜌𝑞𝑣𝐸
4𝑉4
)                                (75) 

and therefore, the quantum vacuum energy density fluctuations satisfy relation 

 
𝑀𝑃𝑙

2𝑐7𝑙𝑝
⬚

8𝐺ℏ𝛼
≥ ∆𝜌𝑞𝑣𝐸

2𝑉2 ≥ √𝛽                                                                                                   (76) 

As a consequence, in this situation the temperature has values in the range 

 

0 ≤ 𝑇 ≤
1−𝛼√𝛽𝑙𝑝

2
∆𝜌𝑞𝑣𝐸
2 𝑉2

ℏ
2𝑐2

𝜋√𝛽𝑙𝑝
2
∆𝜌𝑞𝑣𝐸
2 𝑉2

ℏ
2𝑐2

                                                                                                          (77) 

Coherently with the treatment made in LUTFUOGLU et al. (2021), here we find that the 3D 

DQV based on the generalized uncertainty relations (11) predicts the same upper limit, 1, for 

the horizon size, of the Heisenberg uncertainty principle, but now here we can provide an 

explanation of this result in terms of more fundamental properties of the 3D DQV. Moreover, 

according to equation (77), the temperature has a maximum value determined by the 

behaviour of the variable quantum vacuum energy density.  

On the other hand, for 𝜔𝑞𝑣𝐸 = −1/3, the black hole temperature has the following 

form 

 

𝑇 =
4𝐺∆𝜌𝑞𝑣𝐸

⬚𝑉⬚ℏ
2𝑐2

𝜋𝑙𝑝
2𝑀𝑃𝑙

2𝑐8
(1 − 𝛼   ) (1 − √1 −

𝑙𝑝
2𝑀𝑃𝑙

4𝑐14

16ℏ2𝐺2∆𝜌𝑞𝑣𝐸
4𝑉4
)                                                   (78) 

In this case, the horizon size is not characterized by an upper bound, while the temperature 

has values in the range 

 

0 ≤ 𝑇 ≤
1−𝛼

𝜋√𝛽𝑙𝑝
2
∆𝜌𝑞𝑣𝐸
2 𝑉2

ℏ
2𝑐2

                                                                                                             (79)  

On the basis of the formalism (79), a maximum value of the temperature is determined by 

behaviour of the variable energy density of the 3D DQV, which thus provides a new 

suggestive key of reading of the results obtained in LUTFUOGLU et al. (2021).  

 Let us analyse now the behaviour of the heat capacity. In this regard, one obtains that a 

Schwarzschild black hole surrounded by the specific quantum vacuum energy density 

fluctuations mimicking the action of quintessence is characterized by a heat capacity given by 

relation  

𝐶 =

−
𝜋𝛽𝑙𝑝

2∆𝜌𝑞𝑣𝐸
2 𝑉2

4ℏ2𝑐2
(

 
 
1+

3𝛼𝜔𝑞𝑣𝐸

(
2𝐺∆𝜌𝑞𝑣𝐸

3𝑉3

𝑀𝑃𝑙
2𝑐8

)

3𝜔𝑞𝑣𝐸+1

)

 
 
√1−

𝑙𝑝
2𝑀𝑃𝑙

4𝑐14

16ℏ2𝐺2∆𝜌𝑞𝑣𝐸
4𝑉4

(

 
 
1−

9𝛼𝜔𝑞𝑣𝐸
2

(
2𝐺∆𝜌𝑞𝑣𝐸

3𝑉3

𝑀𝑃𝑙
2𝑐8

)

3𝜔𝑞𝑣𝐸+1

)

 
 
(1−√1−

𝑙𝑝
2𝑀𝑃𝑙

4𝑐14

16ℏ2𝐺2∆𝜌𝑞𝑣𝐸
4𝑉4

)+
𝑙𝑝
2𝑀𝑃𝑙

4𝑐14

16ℏ2𝐺2∆𝜌𝑞𝑣𝐸
4𝑉4

3𝛼𝜔𝑞(1+3𝛼𝜔𝑞𝑣𝐸)

(
2𝐺∆𝜌𝑞𝑣𝐸

3𝑉3

𝑀𝑃𝑙
2𝑐8

)

3𝜔𝑞𝑣𝐸+1

  

                                                                                                                                                (80) 

which tends to zero thus yielding the black hole remnant under the constraint 
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2𝐺∆𝜌𝑞𝑣𝐸
3𝑉3

𝑀𝑃𝑙
2𝑐8

=
1

2
√𝛽𝑙𝑝2

∆𝜌𝑞𝑣𝐸
2 𝑉2

ℏ
2𝑐2

                                                                                                   (81) 

namely 

 

∆𝜌𝑞𝑣𝐸
4𝑉4 = 𝛽𝑙𝑝

2 𝑀𝑃𝑙
4𝑐16

16𝐺2ℏ2𝑐2
                                                                                                       (82)  

Now, by inserting equation (82) into equation (61), we get the non-zero black hole remnant 

temperature 

 

𝑇𝑟𝑒𝑚 =
1

𝜋√𝛽𝑙𝑝
2
∆𝜌𝑞𝑣𝐸
2 𝑉2

ℏ
2𝑐2

(

 
 
1 + 3𝛼𝜔𝑞𝑣𝐸

(

 
 2

√𝛽𝑙𝑝
2
∆𝜌𝑞𝑣𝐸
2 𝑉2

ℏ
2𝑐2

)

 
 

3𝜔𝑞𝑣𝐸+1

)

 
 

                                                (83) 

with a corresponding mass 

 

𝑀𝑟𝑒𝑚 =

√𝛽𝑙𝑝
2
∆𝜌𝑞𝑣𝐸
2 𝑉2

ℏ
2𝑐2

4

(

 
 
1 − 𝛼

(

 
 2

√𝛽𝑙𝑝
2
∆𝜌𝑞𝑣𝐸
2 𝑉2

ℏ
2𝑐2

)

 
 

3𝜔𝑞𝑣𝐸+1

)

 
 

                                                           (84)  

In the light of equations (80) and (83), in the absence of the fluctuations of the quantum 

vacuum energy density which mimic the action of the quintessence matter, the heat capacity 

and the remnant temperature respectively become  

 

𝐶 = −
𝜋𝛽𝑙𝑝

2∆𝜌𝑞𝑣𝐸
2 𝑉2

4ℏ2𝑐2

√1−
𝑙𝑝
2𝑀𝑃𝑙

4𝑐14

16ℏ2𝐺2∆𝜌𝑞𝑣𝐸
4𝑉4

1−√1−
𝑙𝑝
2𝑀𝑃𝑙

4𝑐14

16ℏ2𝐺2∆𝜌𝑞𝑣𝐸
4𝑉4

                                                                                   (85) 

𝑇𝑟𝑒𝑚 =
1

𝜋√𝛽𝑙𝑝
2
∆𝜌𝑞𝑣𝐸
2 𝑉2

ℏ
2𝑐2

                                                                                                               (86)  

Now, with these results at hand, we want to explore their consequences as regards the 

behaviour of the important thermodynamic properties of a Schwarzschild black hole, for the 

opportune values of the state parameter of the 3D DQV in the range −1 < 𝜔𝑞𝑣𝐸 < −1/3, 

which correspond to the opportune cosmological situations of the event horizon radius, above 

mentioned. In this regard, for 𝜔𝑞𝑣𝐸 = −1, the heat capacity, remnant temperature, and 

remnant mass of the Schwarzschild black hole whose surrounding region is characterized by 

quantum vacuum energy density fluctuations mimicking the action of quintessence matter, 

become 

 

𝐶 = −
𝜋𝛽𝑙𝑝

2∆𝜌𝑞𝑣𝐸
2 𝑉2

4ℏ2𝑐2

(1−12𝛼
𝐺2∆𝜌𝑞𝑣𝐸

6𝑉6

𝑀𝑃𝑙
4𝑐16

)√1−
𝑙𝑝
2𝑀𝑃𝑙

4𝑐14

16ℏ2𝐺2∆𝜌𝑞𝑣𝐸
4𝑉4

(1−36𝛼
𝐺2∆𝜌𝑞𝑣𝐸

6𝑉6

𝑀𝑃𝑙
4𝑐16

)(1−√1−
𝑙𝑝
2𝑀𝑃𝑙

4𝑐14

16ℏ2𝐺2∆𝜌𝑞𝑣𝐸
4𝑉4

)+
3𝛼𝛽𝑙𝑝

2
∆𝜌𝑞𝑣𝐸
2 𝑉2

ℏ2𝑐2

2

                               (87) 

𝑇𝑟𝑒𝑚 =
1

𝜋√𝛽𝑙𝑝
2
∆𝜌𝑞𝑣𝐸
2 𝑉2

ℏ2𝑐2

(1 −
3𝛼𝛽𝑙𝑝

2
∆𝜌𝑞𝑣𝐸
2 𝑉2

ℏ2𝑐2

4
)                                                                               (88) 
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𝑀𝑟𝑒𝑚 =

√𝛽𝑙𝑝
2
∆𝜌𝑞𝑣𝐸
2 𝑉2

ℏ2𝑐2

4
(1 −

𝛼𝛽𝑙𝑝
2
∆𝜌𝑞𝑣𝐸
2 𝑉2

ℏ2𝑐2

4
)                                                                                  (89) 

Instead, for 𝜔𝑞𝑣𝐸 = −2/3, the heat capacity, remnant temperature and remnant mass of the 

Schwarzschild black hole surrounded by these peculiar quantum vacuum energy density 

fluctuations mimicking the action of quintessence matter, become 

 

𝐶 = −
𝜋𝛽𝑙𝑝

2∆𝜌𝑞𝑣𝐸
2 𝑉2

4ℏ2𝑐2

(1−4𝛼
𝐺∆𝜌𝑞𝑣𝐸

3𝑉3

𝑀𝑃𝑙
2𝑐8

)√1−
𝑙𝑝
2𝑀𝑃𝑙

4𝑐14

16ℏ2𝐺2∆𝜌𝑞𝑣𝐸
4𝑉4

(1−8𝛼
𝐺∆𝜌𝑞𝑣𝐸

3𝑉3

𝑀𝑃𝑙
2𝑐8

)(1−√1−
𝑙𝑝
2𝑀𝑃𝑙

4𝑐14

16ℏ2𝐺2∆𝜌𝑞𝑣𝐸
4𝑉4

)+
𝛼𝛽𝑙𝑝

2𝑀𝑃𝑙
2𝑐8

4𝐺ℏ2𝑐2∆𝜌𝑞𝑣𝐸
⬚𝑉⬚

                               (90) 

𝑇𝑟𝑒𝑚 =
1−𝛼√𝛽𝑙𝑝

2
∆𝜌𝑞𝑣𝐸
2 𝑉2

ℏ
2𝑐2

𝜋√𝛽𝑙𝑝
2
∆𝜌𝑞𝑣𝐸
2 𝑉2

ℏ
2𝑐2

                                                                                                            (91) 

𝑀𝑟𝑒𝑚 =

√𝛽𝑙𝑝
2
∆𝜌𝑞𝑣𝐸
2 𝑉2

ℏ
2𝑐2

4

(

 
 
1 −

𝛼√𝛽𝑙𝑝
2
∆𝜌𝑞𝑣𝐸
2 𝑉2

ℏ
2𝑐2

2

)

 
 

                                                                               (92) 

Finally, for 𝜔𝑞𝑣𝐸 = −1/3, one obtains the following results regarding the heat capacity, the 

remnant temperature and the remnant mass of the black hole: 

 

𝐶 = −
𝜋𝛽𝑙𝑝

2∆𝜌𝑞𝑣𝐸
2 𝑉2

4ℏ2𝑐2

√1−
𝑙𝑝
2𝑀𝑃𝑙

4𝑐14

16ℏ2𝐺2∆𝜌𝑞𝑣𝐸
4𝑉4

1−√1−
𝑙𝑝
2𝑀𝑃𝑙

4𝑐14

16ℏ2𝐺2∆𝜌𝑞𝑣𝐸
4𝑉4

                                                                                   (93) 

𝑇𝑟𝑒𝑚 =
1−𝛼

𝜋√𝛽𝑙𝑝
2
∆𝜌𝑞𝑣𝐸
2 𝑉2

ℏ
2𝑐2

                                                                                                               (94) 

𝑀𝑟𝑒𝑚 =
(1−𝛼)√𝛽𝑙𝑝

2
∆𝜌𝑞𝑣𝐸
2 𝑉2

ℏ
2𝑐2

4
                                                                                                        (95)  

All equations (87)-(95) show that the peculiar quantum vacuum energy density fluctuations 

are the fundamental entities that generate the different behaviours of heat capacity, remnant 

temperature, and remnant mass of a Schwarzschild black hole, for the opportune values of the 

state parameter of the 3D DQV in the range −1 < 𝜔𝑞𝑣𝐸 < −1/3, corresponding to opportune 

cosmological situations of the event horizon radius.  

Moreover, by introducing the relation between the temperature of a Schwarzschild 

black hole and the variable energy density (namely equation (62)) inside the customary 

definition of the entropy 𝑆 = ∫
𝑑𝑀

𝑇
, we can derive the expression of the entropy of the black 

hole in the presence of the peculiar fluctuations of the quantum vacuum energy density 

mimicking the action of the quintessence matter: 

𝑆 =
2𝜋𝐺2∆𝜌𝑞𝑣𝐸

6𝑉6

𝑀𝑃𝑙
4𝑐16

(1 + √1 −
𝑙𝑝
2𝑀𝑃𝑙

4𝑐14

16ℏ2𝐺2∆𝜌𝑞𝑣𝐸
4𝑉4
) − 𝜋𝛽𝑙𝑝

2 ∆𝜌𝑞𝑣𝐸
2 𝑉2

8ℏ2𝑐2
ln

2𝐺∆𝜌𝑞𝑣𝐸
3𝑉3

𝑀𝑃𝑙
2𝑐8

−

𝜋𝛽𝑙𝑝
2 ∆𝜌𝑞𝑣𝐸

2 𝑉2

8ℏ2𝑐2
ln (1 + √1 −

𝑙𝑝
2𝑀𝑃𝑙

4𝑐14

16ℏ2𝐺2∆𝜌𝑞𝑣𝐸
4𝑉4
)                                                                   (96) 
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We can observe here that the entropy of the black hole is not influenced by the surrounding 

quantum vacuum energy density fluctuations mimicking the action of quintessence, while it is 

modified by the generalized uncertainty relations describing the deformation of the geometry 

of the background, in an analogous way to what happens in absence of these peculiar vacuum 

fluctuations, as we have seen in the previous section. Moreover, in the Heisenberg uncertainty 

principle limit, the entropy assumes the familiar expression, 𝑆 = 𝜋𝑟𝐻
2  =  𝐴/4. Finally, in our 

approach, we can also express the mass as a function of the quantum vacuum energy density 

fluctuations mimicking the action of quintessence and the horizon radius: 

 

𝑀 =
𝑟𝐻

2
+

35𝐺𝑐2𝑟𝐻
3

6𝜋ℏ4𝑉𝜔𝑞𝑣𝐸
(
𝑉

𝑐2
∆𝜌𝑞𝑣𝐸

𝐷𝐸 )
6

                                                                                  (97) 

and, by inserting (97) and the following expression of the volume in terms of the horizon 

radius and state parameter of the vacuum 

 

𝑉 =
𝑟𝐻
3

3𝜔𝑞𝑣𝐸
2                                                                                                                                 (98) 

inside equation (62), one finds 

 

𝑇 =
2(3𝜔𝑞𝑣𝐸

2 𝑉)
1/3

𝜋𝛽
(1 + 2

35𝐺𝑐2

6𝜋ℏ4𝑉
(
𝑉

𝑐2
∆𝜌𝑞𝑣𝐸

𝐷𝐸 )
6

(3𝜔𝑞𝑣𝐸
2 𝑉)

2/3
)(1 − √1 −

𝛽

4(3𝜔𝑞𝑣𝐸
2 𝑉)

2/3)          (99)  

On the basis of equation (99), for 𝑇 = 1 isotherm, one can obtain the modified equation of 

state of the Schwarzschild black hole in the 3D DQV in the form 

 

35𝜔𝑞𝑣𝐸𝐺𝑐
2

2𝜋ℏ4𝑉
(
𝑉

𝑐2
∆𝜌𝑞𝑣𝐸

𝐷𝐸 )
6

=
𝜔𝑞𝑣𝐸

2(3𝜔𝑞𝑣𝐸
2 𝑉)

2/3

[
 
 
 
 

1 −
𝜋𝛽

2(3𝜔𝑞𝑣𝐸
2 𝑉)

1/3

1

1−√1−
𝛽

4(3𝜔𝑞𝑣𝐸
2 𝑉)

2/3

]
 
 
 
 

                          (100) 

namely 

 

(∆𝜌𝑞𝑣𝐸
𝐷𝐸 )

6
=

𝜋ℏ4𝑐10

35𝐺𝑉5(3𝜔𝑞𝑣𝐸
2 𝑉)

2/3

[
 
 
 
 

1 −
𝜋𝛽

2(3𝜔𝑞𝑣𝐸
2 𝑉)

1/3

1

1−√1−
𝛽

4(3𝜔𝑞𝑣𝐸
2 𝑉)

2/3

]
 
 
 
 

                                      (101) 

Equation (101) expresses the link of the peculiar fluctuations of the variable energy density of 

the 3D DQV which are responsible for the acceleration of space, with the fundamental 

parameters describing the geometry of the 3D DQV as well as with fundamental constants.  

 

CONCLUSIONS AND OPEN PERSPECTIVES 

  

In the model of the three-dimensional dynamic quantum vacuum characterized by a 

variable energy density, one deals with a deformation of the geometry at the Planck scale 

expressed by opportune generalized uncertainty relations (11) which introduces new scenarios 

of re-reading of the thermodynamics of Schwarzschild black holes. In particular, they lead to 

a modification of the standard expression of the Hawking temperature as well as to a 

generalized entropy of the black hole which overcomes a sort of dilatation with respect to the 

standard Bekenstein-Hawking entropy and a modified heat capacity which implies that the 

physical situation represented by the remnant mass in the standard interpretation (which 

correspond to the ending of the collapse of the black hole) is obtained under the constraint of 

absence of quantum vacuum energy density fluctuations.  
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 Moreover, the behaviour of Schwarzschild black holes surrounded by quintessence is 

explained in terms of negative pressure (60) ultimately associated with more fundamental 

specific quantum vacuum energy density fluctuations which are responsible for the 

accelerated expansion of the universe. In other words, in the three-dimensional dynamic 

quantum vacuum, whose geometry is ruled by the generalized uncertainty relations (11), dark 

energy does not exist as a primary physical reality but is the manifestation of more elementary 

quantum vacuum energy density fluctuations as well as of a peculiar state parameter 

characterizing them. We have thus explored that heat capacity, remnant temperature, and 

remnant mass of the Schwarzschild black hole whose surrounding region is characterized by 

quantum vacuum energy density fluctuations mimicking the action of quintessence matter, 

turn out to have values that are determined by the fluctuations of the quantum vacuum energy 

density as well as the deformation parameter, thus providing an explanation of the results of 

other current research in terms of a more fundamental background. In particular, the 

temperature of black holes under opportune constraints regarding the state parameter of the 

dynamic quantum vacuum which corresponds to specific features of the horizon is explored 

and we have found that, in each peculiar range of the state parameter, it has a maximum value 

which is directly associated with a specific behaviour of the quantum vacuum energy density 

fluctuations. Finally, an equation of state expressing the link between the peculiar fluctuations 

of the variable energy density of the 3D DQV which is responsible for the acceleration of 

space, and the fundamental parameters describing the geometry of the 3D DQV, is obtained. 

In this regard, the perspective is opened that this equation of state regarding the behaviour of 

the dark energy density fluctuations introduces new keys for re-reading of crucial 

cosmological issues and this could be a relevant issue to be explored in future works.  

 On the other hand, another important step regards the possibility of finding a relation 

of the model here proposed with other relevant alternative approaches which invoke the 

existence of minimal lengths and with current models of thermodynamics of black holes 

surrounded by quintessence matter. In this regard, in particular, GHOSH et al., (2018) have 

recently explored the thermodynamics of black holes in D-dimensional Lovelock gravity, 

where the action contains higher order curvature terms and reduces to the Einstein-Hilbert 

action in four dimensions, finding that mass, entropy and temperature are modified to the 

surrounding quintessence background owing to the quintessence energy density term 

 

𝜌𝑞 = −
𝜔𝑞𝑞(𝐷−1)(𝐷−2)

2𝑟(𝐷−1)(𝜔𝑞+1)
                                                                                                           (102) 

where 𝑞 is appropriately chosen such that 𝜔𝑞 ≤ 0 . In our approach, on the basis of equation 

(60), the quintessence matter is replaced by the opportune specific fluctuations of the energy 

density of the three-dimensional quantum vacuum which appears in equation (7). Moreover, 

the quintessential state parameter 𝜔𝑞 is replaced by the state parameter of the three-

dimensional quantum vacuum 𝜔𝑞𝑣𝐸 which describes the specific fluctuations responsible for 

the accelerated expansion of the universe. Therefore, taking account of equations (7) and (60), 

we obtain 

 
35𝐺𝑐2

2𝜋ℏ4𝑉
(
𝑉

𝑐2
∆𝜌𝑞𝑣𝐸

𝐷𝐸 )
6

= −
𝜔𝑞𝑞(𝐷−1)(𝐷−2)

2𝑟(𝐷−1)(𝜔𝑞+1)
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namely 
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Equation (104) implies therefore 
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which means that the action of the higher D-dimensional background in the thermodynamics 

of the black hole in Lovelock gravity can be seen as a secondary effect of a more fundamental 

primordial variable quantum vacuum energy density. 

 Finally, a suggestive problem would be to find an explanation of black hole mass 

growth due to cosmological coupling, which has been recently tested in elliptical galaxies 

over redshift satisfying relation 0 < 𝑧 ≤ 2,5 (FARRAH et al., 2023). In this regard, a 

parametrization of the variation of the black hole mass in time has been proposed by CROKER 

et al., (2019) as 

 

𝑀(𝑎) = 𝑀(𝑎𝑖) (
𝑎

𝑎𝑖
)
𝑘

                                                                                                            (106) 

where 𝑎𝑖 is the scale factor at which the black hole becomes cosmologically coupled and 𝑘 ≈
3 is the maximum value of the cosmological coupling strength which is associated with 

positive energy density (CROKER et al., 2021) and it has been proposed that stellar remnant 

𝑘 = 3 black holes are the astrophysical origin of late-time accelerating expansion of the 

universe (FARRAH et al., 2023). In the model of 3D DQV based on the generalized uncertainty 

relations (11), the key point regarding the remnant mass of the black holes is represented by 

equation (84), and therefore equation (106) here becomes  
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)
𝑘

             (107) 

where ∆𝜌𝑐𝑜𝑢𝑝𝑙𝑒𝑑 denotes the quantum vacuum energy density fluctuations at which the black 

hole becomes cosmologically coupled and 𝑘 ≈ 3 is the cosmological coupling strength. As 

regards the consequences of relation (105) as regards the link of the D-dimensional 

background of Lovelock gravity and the corresponding more fundamental parameters of the 

three-dimensional dynamic quantum vacuum, as well as the implications of equation (107) in 

the description of the formation of black holes and explanation of cosmological black hole 

mass changes, further research will give you more information. 
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