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ABSTRACT. One fundamental question is the connection between electrical and 

gravitational forces. We present a quantum entanglement model, with multiple discrete 

electrically charged wave-packets, that simulates gravitational attraction among them, 

where quantum states can have only two wave-packets with opposite charge polarities, with 

equal absolute values, while the rest remain neutral, relating those charges to gravitational 

masses. We present a thought experiment where neutrons are displaced by electric fields 

above the Schwinger limit, predicting their maximum possible corresponding displacement 

magnitudes and diminishments in their gravitational masses (with increments elsewhere), 

estimating an upper bound for the gravitational mass of each of those entangled wave-

packets allegedly constituting those neutrons. Thus, the realization of the experiment could 

verify the predictions, but cannot necessarily falsify the model. The model’s significance 

rests in hypothesizing entanglements in a classical mechanical property without violating 

the measurement independence postulate and in its possible applications for gravity 

simulations with quantum systems.  
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INTRODUCTION 
 

  Quantum systems can simulate situations that are classically impossible, such as 

simulating 𝑁-body gravitational attraction with electric charges; we present an approach that 

differs from typical electrogravity theories (CHEW, 2021). We present an 𝑁-body model, where 

pairs of charges in quantum states have correlated opposite polarities, while the others remain 

neutral, so that they always attract without the need for an explicit classical mechanism, 

contrasting recent suggestions to explain the relation between electricity and gravity with a 

hydrodynamic analogy (BERBENTE and BERBENTE, 2020). In this way, our model is an entangled 

quantum system where charged discrete wave-packets (WPs) can simulate Newton's law of 

gravity by superposing all possible opposite polarity pair states (OPPS), where the WPs in each 

of those OPPS are attracted to the others by Coulomb’s law, without being explicit about the 
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correlating mechanism, regardless of their relative locations, as is already well known of 

quantum systems (HENSEN et al., 2015; SHALM et al., 2015). From the point of view of the 

many-worlds interpretation of quantum mechanics (VAIDMAN, 2020) (only as a pedagogical 

tool to expound upon the model), each of the mentioned charges is attracted to its opposite by 

the inverse square law in one “world”, but in another, the same pair does not necessarily attract 

nor repel because one of those two, or both, are neutral. The superposition of all those “worlds” 

is an entanglement which will be referred to as the electro-gravity entanglement (EGE). The 

superposition of those OPPSs is equivalent to Newton’s law of gravity if the WPs of that EGE 

are associated with gravitational mass (GM) as a function of the intrinsic charges that form the 

entanglement, which will be referred to as EG-charges. In the non-reduced EGE, there are as 

many “worlds” where a WP is positive as there are “worlds” where it is negative, that is, the 

global EG-charge (GEGC) of that WP is zero. Such a GEGC is defined as the addition of the 

intrinsic EG-charges in all of those “worlds”. Reduction of the EGE by external interaction with 

only one of its WPs can change the zero GEGC of that WP, changing also necessarily the one 

of all the others, which ends up with GEGC polarity opposite to the one of that WP, whose 

absolute value of its GEGC is equal to the absolute value of the sum of the GEGC of the others. 

In our model, Newton’s law of gravity is approximately a macroscopic EGE in a Galilean 

reference frame, that is, in situations that don’t require the theory of relativity, but it is not to 

say that the model cannot be generalized. 

  As shown in the methods section, decreasing the number of WPs in the EGE implies an 

increment in the average magnitude of the force attracting any entangled WP to the others. The 

average magnitude of such a force depends on the probability that both are in one of the 

aforementioned OPPSs. However, if the number of entangled WPs decreases, the average 

magnitude of that force increases due to the increment in the probabilities of all OPPSs resulting 

from fewer state elements forming a reduced EGE. The latter statement can also be interpreted 

as an increment in the GMs of those WPs. Given the necessity to introduce new relevant 

paradigms (DODELSON, 2011; CHAE et al., 2020; CHAE, 2022) based on cosmic evidence, our 

model could also be relevant. Based on our model, GM increments in a whole system can be 

associated with diminishments in the GM of particular WPs that are not part of that system 

under consideration. Models suggested in the literature do not acknowledge the possibility of 

the macroscopic EGE introduced in the present work.  

If gravity results from an EGE then the GMs of a set of WPs forming the EGE could be 

displaced by an external electric field. We present the equation that predicts all the possible 

values of effective EG-charge for sets of “attached” WPs forming known elementary 

“particles”: such an effective EG-charge behaves just like an ordinary charge when interacting 

with an external electric field. The maximum value of effective EG-charge predicted can be 

tested to confirm our model with neutrons. 

We offer a thought experiment with neutrons (𝑛0) moving through a homogeneous 

electric field. Our calculations imply an effective EG-charge 

𝑞𝑒𝑓𝑓 = 𝜁(|𝐴|, 𝜂) ⋅ 𝑚𝑎 √
𝐺

𝐾
                                                                                                           (1) 

(a similar relation has been mentioned in the literature by others (CLAGUE, 2022; DUNCAN, 

2023) in a different context without the EGE and its implications), where 𝐾  and 𝐺  are the 

Coulomb’s constant and gravitational constant, respectively, and 𝑚𝑎  is the smallest GM 

possible. We hypothesize that 𝑚𝑎 < 1.424 × 10−36 kg , based on the latest estimate for the 

neutrino’s (𝜈) rest mass (FORMAGGIO et al., 2021; VAYANAS et al., 2021; AKER et al., 2022) 

assuming that such a mass is attracted by Newton’s inverse square law to other GMs. Such an 

upper bound is also used to calculate the output of the function 𝜁(|𝐴|, 𝜂)  for inputs 

corresponding, respectively, to a lower bound for the number of WPs in a neutron, and a 

parameter 𝜂𝑚𝑎𝑥 = |𝐴|/2 − 1 that results in the maximum possible effective EG-charge with 
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that lower bound. Our calculations imply an upper bound of 4.044 × 10−51 C for the maximum 

possible effective EG-charge of a neutron. In the thought experiment presented, the effective 

EG-charge can be detected by allowing neutrons to separate freely from their original paths, for 

a time that allows to distinguish those separations from their quantum uncertainties, after 

interacting impulsively with the homogeneous electric field that provides momentum to each 

neutron. Our results show that a field greater than 1 × 1025 N/C is required to make a detection 

with the parameters introduced for the thought experiment. 

 

 

METHODS 

 

Axioms for the model and the implications 
 

In a Galilean reference frame, 𝑁 WPs that belong to  

{𝜓𝑛
(𝜙𝑛)

| 𝜙𝑛 ∈ {0,+|𝑞𝑛|, −|𝑞𝑛|}; ∀𝑛 ∈ {𝑁}}, 

having electric charge values specified by 𝜙𝑛 , forming elementary “particles” that satisfy 

Schrodinger’s equation, are part of 

𝑈 = {|𝜓1
(0)

, 𝜓2
(0)

… ,𝜓𝑎
(±|𝑞𝑎|)

, … , 𝜓𝑏
(∓|𝑞𝑏|)

, … , 𝜓𝑁
(0)

⟩  | ∀𝑎, ∀𝑏 ∈ {𝑁}; 𝑏 ≠ 𝑎}                              (2) 

such that any |Λ𝑞𝑎,𝑞𝑏
⟩ ∈ 𝑈, with those two discrete opposite polarity intrinsic EG-charges 𝑞𝑎 

and 𝑞𝑏  that have equal absolute values while the others are zero, satisfy orthonormality 

condition 

⟨Λ𝑞𝑎,𝑞𝑏
|Λ𝑞𝑎

′ ,𝑞𝑏
′ ⟩ = 𝛿𝑞𝑎,𝑞𝑎

′ ⋅ 𝛿𝑞𝑏,𝑞𝑏
′                                                                                                  (3) 

in the following axioms: 

Axiom 1: The average electric force on a WP 𝑎 by 𝑏, due to their intrinsic charges, is 

𝒇⃗ 𝑎𝑏, such that 

𝒇⃗ 𝑎𝑏 = 𝑃𝑎𝑏⟨Λ𝑞𝑎,𝑞𝑏
| 𝑭̂𝑛𝑚|Λ𝑞𝑎,𝑞𝑏 ⟩ 𝑟̂𝑎𝑏 ,                                                                                          (4) 

where the linear operator 

𝑭̂𝑎𝑏|Λ𝑞𝑎,𝑞𝑏
⟩ = |𝒇⃗ 𝑎𝑏

(𝜆)
| ⋅ |Λ𝑞𝑎,𝑞𝑏

⟩,                                                                                                 (5) 

and where 𝑃𝑎𝑏 is the probability that 𝑎 and 𝑏 have charge 𝑞𝑎, 𝑞𝑏. The average force is in the 

direction of the unit vector 𝑟̂𝑎𝑏  pointing from the average position of 𝑏  towards that of 𝑎 . 

Similarly, the average force on any WP 𝑎 by an external electric field 𝑬⃗⃗ 𝑙 ( such as the one from 

an electron or proton) is 

𝒇⃗ 𝑎𝑙 = 𝑃𝑞𝑎
𝑞𝑎𝑬⃗⃗ 𝑙,                                                                                                                          (6) 

where 𝑃𝑞𝑎
 is the probability that 𝑎 has charge 𝑞𝑎. 

Axiom 2: Matter form the orthonormal state |𝐸𝐺𝐸⟩𝑁 that consists of the superposition 

of all possible |Λ𝑞𝑎,𝑞𝑏
⟩ ∈ 𝑈, forming a complete set, that is,  

|𝐸𝐺𝐸⟩𝑁 = ∑ ∑ (√𝑃+|𝑞𝑎|,−|𝑞𝑏| |Λ+|𝑞𝑎|,−|𝑞𝑏|⟩ + √𝑃−|𝑞𝑎|,+|𝑞𝑏| |Λ−|𝑞𝑎|,+|𝑞𝑏|⟩
𝑁
𝑏>𝑎

𝑁−1
𝑎 )                     (7) 

such that 
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∑ ∑ (𝑃+|𝑞𝑎|,−|𝑞𝑏| + 𝑃−|𝑞𝑎|,+|𝑞𝑏|)
𝑁
𝑏>𝑎

𝑁−1
𝑎 = 1.                                                                               (8) 

Such a completeness condition is also true for the state-elements of any reduction of |𝐸𝐺𝐸⟩𝑁. 

Axiom 3: The GM of 𝜓𝑎
(±|𝑞𝑎|)

, in Axiom 2, attracted by  𝜓𝑏
(∓|𝑞𝑏|)

, is a function of  both 

|𝑞𝑎| and the probability 𝑃±|𝑞𝑎|,∓|𝑞𝑏| as defined in Axiom 1 and used in Axiom 2, that is, 

𝑚𝑎 = |𝑞𝑎| √𝑃+|𝑞𝑎|,−|𝑞𝑏| + 𝑃−|𝑞𝑎|,+|𝑞𝑏| √
𝐾

𝐺
,                                                                                (9) 

where 𝑚𝑎  is that GM associated with 𝜓𝑎
(±|𝑞𝑎|)

, 𝐾 is the electric constant in Coulombs law, and 

𝐺 is the gravitational constant. 

For simplicity, the subscripts of  𝑃±|𝑞𝑎|,∓|𝑞𝑏| and |Λ∓|𝑞𝑎|,±|𝑞𝑏|⟩ will be written often just 

as 𝑃±𝑎,∓𝑏 and |Λ∓𝑎,±𝑏⟩. Occasionally, 𝑃𝑎𝑏 = 𝑃±𝑎,∓𝑏 .   

The three axioms imply Newton’s law of gravity. Consider only the intrinsic EG-charges 

of the WPs 𝑖 and 𝑗 such that 𝑖, 𝑗 ∈ {𝑁}. Notice that from Axiom 1 and Axiom 2 follows that 

𝒇⃗ 𝑖𝑗 =
𝑃+𝑖,−𝑗⋅𝐾⋅(+)|𝑞𝑖|⋅(−)|𝑞𝑗|

|𝒓⃗ 𝑖𝑗|
2 ⋅ 𝒓̂𝑖𝑗 +

𝑃−𝑖,+𝑗⋅𝐾⋅(−)|𝑞𝑖|⋅(+)|𝑞𝑗|

|𝒓⃗ 𝑖𝑗|
2 ⋅ 𝒓̂𝑖𝑗                                                              (10) 

if we regard |𝒓⃗ 𝑖𝑗| as the average distance between those two WPs. Then, assuming  𝑃+𝑖,−𝑗 =

𝑃−𝑖,+𝑗. 𝑎𝑛𝑑 plugging 𝑞𝑖 and 𝑞𝑗 in terms of the GM in Axiom 3, implies   

𝒇⃗ 𝑖𝑗 = −
𝐺𝑚𝑖𝑚𝑗

|𝒓⃗ 𝑖𝑗|
2 ⋅ 𝒓̂𝑖𝑗                                                                                                                   (11) 

where the negative sign originates from the product of opposite charge polarities. Now, for two 

macroscopic objects, 𝐴 and 𝐵, composed of WPs 𝑎 ∈ 𝐴, 𝑎 ∉ 𝐵, 𝑏 ∈ 𝐵, 𝑏 ∉ 𝐴, the force on 𝐴 by 

𝐵 is the sum of all the forces on any 𝑎 by any 𝑏, that is,  

𝒇⃗ 𝐴𝐵 = ∑ ∑ (
𝑃+𝑎,−𝑏⋅𝐾⋅(+)|𝑞𝑎|⋅(−)|𝑞𝑏|

|𝒓⃗ 𝑎𝑏|2
⋅ 𝒓̂𝑎𝑏 +

𝑃−𝑎,+𝑏⋅𝐾⋅(−)|𝑞𝑎|⋅(+)|𝑞𝑏|

|𝒓⃗ 𝑎𝑏|2
⋅ 𝒓̂𝑎𝑏)

|𝐵|
𝑏=1

|𝐴|
𝑎=1 ,                           (12) 

applying Axiom 1 and Axiom 2 to each possible pair and adding them. The masses of A and B 

are  

𝑀𝐴 = ∑ |𝑞𝑎| √𝑃+𝑎,−𝑏 + 𝑃−𝑎,+𝑏 √
𝐾

𝐺

|𝐴|
𝑎=1  and 𝑀𝐵 = ∑ |𝑞𝑏| √𝑃+𝑎,−𝑏 + 𝑃−𝑎,+𝑏 √

𝐾

𝐺

|𝐵|
𝑏=1 ;            (13) 

one can verify that that a macroscopic object 𝐴 is attracted by 𝐵 with a force 

𝒇⃗ 𝐴𝐵 = −
𝐺𝑀𝐴𝑀𝐵

|𝒓⃗ 𝐴𝐵|2
⋅ 𝒓̂𝐴𝐵,                                                                                                                 (14) 

considering only components in the direction of 𝒓̂𝐴𝐵 and 𝒓⃗ 𝐴𝐵 connecting their centers of mass, 

given that 𝑃+𝑎,−𝑏 = 𝑃−𝑎,+𝑏. 

To test whether gravity is indeed an EGE, we first calculate the average force between 

any of the WPs in a “non-attached” sample set 𝐴  (in the state described in axiom 2) by an 

external electric field (such as the one by an electron or a proton), such that |𝐴| ≪ 𝑁. In general, 

for  all 𝑎 ∈ 𝐴 and 𝑎′ ∉ 𝐴,  

|𝐸𝐺𝐸⟩𝑁 = ∑ (√𝑃+|𝑞𝑎| |Ω+|𝑞𝑎|⟩ + √𝑃−|𝑞𝑎| |Ω−|𝑞𝑎|⟩) + 𝑂(𝑎′),
|𝐴|
𝑎=1                                             (15) 

where 𝑂(𝑎′) are terms that do not include 𝑎, and 
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|Ω±|𝑞𝑎| ⟩ = ∑ √𝑃Ω±𝑎,𝑏  |Λ±𝑎,∓𝑏⟩.
𝑁
𝑏>𝑎                                                                                            (16) 

If 𝑃±|𝑞𝑎| is the probability of |Ω±|𝑞𝑎|⟩, and all |Λ𝑞𝑎,𝑞𝑏
⟩ are orthonormal, then 

∑ 𝑃Ω±𝑎𝑏

𝑁
𝑏>𝑎 = 1.                                                                                                                             (17) 

Now, assuming that 𝑃+|𝑞𝑎| = 𝑃−|𝑞𝑎| and 𝑃Ω+𝑎𝑏 = 𝑃Ω−𝑎𝑏 , (15) and (16) imply that  

𝑃±|𝑞𝑎| ⋅ 𝑃Ω±𝑎𝑏 = 𝑃±𝑎,∓𝑏                                                                                                                (18) 

corresponding to the probabilities of each |Λ±𝑎,∓𝑏,𝑙⟩ in Axiom 2, implying further that 

𝑃±|𝑞𝑎| =
𝑃±𝑎,∓𝑏

𝑃Ω±𝑎𝑏 
                                                                                                                           (19) 

The ratio of (19) is approximately the same for all 𝑎 ∈ 𝐴, when |𝐴| ≪ 𝑁, assuming that 

A1) All 𝑃±𝑎,∓𝑏 are constant in Axiom 2,  

A2) All 𝑃Ω±𝑎𝑏 are essentially constant for all 𝑎 and for all 𝑏 > 𝑎 in eq. (16);  

thus, if 𝑃±|𝑞𝑎| is the probability of  |Ω±|𝑞𝑎|⟩, then Axiom 1 implies that the average force of 

attraction on either 𝜓𝑎
(±|𝑞𝑎|)

 by an external charge 𝑬⃗⃗ 𝑙 is either 

𝒇⃗ 𝑎𝑙 = ±𝑃±|𝑞𝑎| ⋅ |𝑞𝑎|𝑬⃗⃗ 𝑙                                                                                                                  (20) 

for all 𝑎 ∈ 𝐴 where the effective EG-charge is the expression 

𝑞𝑎
𝑒𝑓𝑓

= ±𝑃±|𝑞𝑎| ⋅ |𝑞𝑎|. (21) 

  

Effective EG-charge for sets of WPs 
 

Because certain types of elementary “particles” are made up of “attached” WPs as one 

sample, the average force on the “particle” by an external electric field is dependent on the sum 

of all the effective EG-charges of the WPs forming that sample. The dynamics of each WP is 

constrained by the others, unlike the case for “non-attached” WPs in the previous paragraph. In 

this case, the terms of |𝐸𝐺𝐸⟩𝑁 can be arranged by the polarity resulting from the sums of the 

possible effective EG-charges of the sample 𝐴, that is, net positive, negative or zero effective 

EG-charge. Mathematically speaking,  

|𝐸𝐺𝐸⟩𝑁 = ∑  |Ω𝒒⃗⃗ 
𝑘(+)

(+)
⟩

𝛾(+)

𝑘(+)  +∑  |Ω𝒒⃗⃗ 
𝑘(−)

(−)
⟩

𝛾(−)

𝑘(−) + ∑ |Ω𝒒⃗⃗ 
𝑘(0)

(0)
⟩

𝛾(0)

𝑘(0)  +

√𝑃~𝐴 ∑ ∑ (√𝑃~𝐴+𝜇,−𝜈
|Λ+𝜇,−𝜈⟩

𝑁
𝜈>𝜇

𝑁−1
𝜇>|𝐴| + √𝑃~𝐴−𝜇,+𝜈

|Λ−𝜇,+𝜈⟩),                                             (22) 

such that  

|Ω𝒒⃗⃗ 
𝑘(+)

(+)
⟩ = ∑ 𝐵√𝑃𝑞𝑎

|Ω𝑞𝑎
𝑘(+)

⟩
|𝐴|
𝑎=1  for 𝒒⃗⃗ 𝑘(+) = (𝑞1

𝑘(+)
, … , 𝑞|𝐴|

𝑘(+)
)  

where ∑ 𝑞𝑎
𝑘(+)

|𝐴|
𝑎=1 > 0, 

|Ω𝒒⃗⃗ 
𝑘(−)

(−)
⟩ = ∑ 𝐵√𝑃𝑞𝑎

|Ω𝑞𝑎
𝑘(−)

⟩
|𝐴|
𝑎=1 , for 𝒒⃗⃗ 𝑘(−) = (𝑞𝑘(−) , . . . , 𝑞|𝐴|

𝑘(−)
)  
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where ∑ 𝑞𝑎
𝑘(−)

|𝐴|
𝑎=1 < 0,  

|Ω𝒒⃗⃗ 
𝑘(0)

(0)
⟩ = ∑ 𝐵√𝑃𝑞𝑎

|Ω𝑞𝑎
𝑘(0)

⟩
|𝐴|
𝑎=1  for 𝒒⃗⃗ 𝑘(0) = (𝑞1

𝑘(0)
, . . . , 𝑞|𝐴|

𝑘(0)
)  

where ∑ 𝑞𝑎
𝑘(0)

|𝐴|
𝑎=1 = 0,                                                                                                          (23) 

where each 𝒒⃗⃗ 𝑘(+) , 𝒒⃗⃗ 𝑘(−) , 𝒒⃗⃗ 𝑘(0)   is unique; the state |Ω𝑞𝑎
𝑘(±)

⟩  and |Ω𝑞𝑎
𝑘(0)

⟩   are either |Ω±|𝑞𝑎|⟩ , 

defined in eq. (16), associated with each 𝑘(±) and 𝑘(0).  All 𝑃𝑞𝑎
 are essentially equal in (23), as 

implied by eq. (19) with assumptions A1) and A2) introduced in the previous paragraph. The 

last term in (22) corresponds to states that do not include any of the WPs from sample 𝐴. 
𝛾(+), 𝛾(−), 𝛾(0) refer to the respective total number of sum-combinations that can be made with 

additions of 𝐵√𝑃𝑞𝑎
|Ω𝑞𝑎

⟩, with all the WPs of 𝐴, where each one of those sum-combinations 

corresponds to each 𝒒⃗⃗ 𝑘(+) , 𝒒⃗⃗ 𝑘(−) , 𝒒⃗⃗ 𝑘(0) .  The square of the coefficients, that is, (𝐵√𝑃𝑞𝑎
)
2
, 

corresponds the probability of any |Ω𝑞𝑎
𝑘(±)

⟩  or |Ω𝑞𝑎
𝑘(0)

⟩ . In this way, eq. (22) is a special 

arrangement of the terms in eq. (15).  

The first two summations in (23) can be arranged further so that the net intrinsic EG-

charge ∑ 𝑞𝑎
𝑘(±)

|𝐴|
𝑎=1  corresponds to a specific value. The number of terms in the third summation 

of (22), corresponding to zero net effective EG-charge, is the number of sum-combinations that 

can be made with half of the total number of WPs in the sample out of the total, each half 

corresponding to a specific polarity, that is,  

𝛾(0) = 𝐶|𝐴|/2
|𝐴|

 ,                                                                                                                               (24) 

if |𝐴| is an even number; thus, for the first two summations in eq. (22), 

𝛾(±) = 
1

2
(2|𝐴| − 𝐶|𝐴|/2

|𝐴|
 )                                                                                                             (25) 

is the total number of terms where the net effective EG-charge is not zero, given that there is a 

total of 2|𝐴| ways to add |𝐴| of those EG-charges. Furthermore, the first two summations in (22) 

can be expanded so that each 𝒒⃗⃗ 𝑘(±) correspond to the same net effective EG-charge. Notice that  

1

2
(2|𝐴| − 𝐶|𝐴|/2

|𝐴|
) = ∑ 𝐶|𝐴|−𝜂

|𝐴|
|A|

2
−1

𝜂=0                                                                                                   (26) 

(which can be proven with mathematical induction and several instances of Pascal’s 

combinatorial identity (BIGGS, 1990); thus, given (25) and (26), the first two summations in 

(22) become  

∑  |Ω𝒒⃗⃗ 
𝑘(±)

(±)
⟩

𝛾(±)

𝑘(±) = ∑ ∑ ∑ 𝐵√𝑃𝑞𝑎
|Ω𝑞𝑎(±)(𝜂,𝜌) 

⟩
|𝐴|
𝑎=1

Ρ(η)
𝜌=1

Η 
𝜂=0                                                             (27) 

where 

Η =
|A|

2
− 1                                                                                                                                   (28) 

and  

Ρ(η) = 𝐶|𝐴|−𝜂
|𝐴|

                                                                                                                                (29) 

for some bijective function 𝑔(𝑘(±)) = (±)(𝜂, 𝜌). In this manner, eq. (27) means that the net 

EG-charge 
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∑ 𝑞𝑎
𝑘(±)

|𝐴|
𝑎=1 = (±1) ⋅ (|𝐴| − 2𝜂)|𝑞𝑎(±)(𝜂,𝜌)

|                                                                                 (30) 

in (23), for each 𝒒⃗⃗ 𝑘(±) : For every 𝜂 , there are Ρ(η)  ways to add |𝐴|  of the states |Ω𝑞𝑎
𝑘(±)

⟩ 

forming |Ω𝒒⃗⃗ 
𝑘(±)

(±)
⟩  with a subset of {𝑘(±)} , such that the net EG-charge of each 𝒒⃗⃗ 𝑘(±)  , 

corresponding to the elements of that subset, is the right-hand side of (30). There is a total of 

|A|/2 − 1 different possible net EG-charge values that can be obtained by those additions for 

each of the two sample polarities. By establishing a one-to-one correspondence between each 

𝑘(±) and the two variables (±)(𝜂, 𝜌), the net intrinsic EG-charge can be defined by (30) for 

{𝑘(±)}. 

      As implied by Axiom 2, eq. (22) must be normalized, which implies a relation between 𝑃𝑞𝑎
 

and 𝑃~𝐴; such a relation is also true when combining (22) with (27). Plugging (27) into eq. (22), 

and defining 

|~𝐴⟩ = ∑ ∑ (√𝑃~𝐴+𝜇,−𝜈
|Λ+𝜇,−𝜈⟩

𝑁
𝜈>𝜇

𝑁−1
𝜇>|𝐴| + √𝑃~𝐴−𝜇,+𝜈

|Λ−𝜇,+𝜈⟩),                                           (31) 

we can write   

|𝐸𝐺𝐸⟩𝑁 = ∑ ∑ ∑ √
1

2|𝐴| √𝑃𝑞𝑎
|Ω𝑞𝑎(+)(𝜂,𝜌) 

⟩
|𝐴|
𝑎

Ρ(η)
𝜌=1

Η 
𝜂=0   

+∑ ∑ ∑ √
1

2|𝐴| √𝑃𝑞𝑎
|Ω𝑞𝑎(−)(𝜂,𝜌) 

⟩
|𝐴|
𝑎

Ρ(η)
𝜌=1

Η 
𝜂=0 + ∑ √

1

2|𝐴| √𝑃𝑞𝑎
|Ω𝑞⃗ 

𝑘(0)

(0)
⟩

𝛾0

𝑘(0)  + √𝑃~𝐴|~𝐴⟩,              (32) 

introducing 𝐵 = √
1

2|𝐴| so that (𝐵√𝑃𝑞𝑎
)
2
 is the probability of any |Ω𝑞𝑎

𝑘(±)
⟩ or |Ω𝑞𝑎

𝑘(0)
⟩ in (32).   

In (31), notice that if 𝑃~𝐴 is the probability of |~𝐴⟩, then 

∑ ∑ (𝑃~𝐴+𝜇,−𝜈
𝑁
𝜈>𝜇

𝑁−1
𝜇>|𝐴| + 𝑃~𝐴−𝜇,+𝜈

) = 1                                                                                     (33) 

given the orthonormality condition of all |Λ𝑞𝑎,𝑞𝑏
⟩. Notice that by letting (𝐵√𝑃𝑞𝑎

)
2
 and 𝑃~𝐴 be 

the probabilities of the corresponding state-elements, implying (17) and (33), and combining 

eq. (23) with (22), inserting the given 𝐵 and considering every 𝑃𝑞𝑎
 the same, the expression 

𝑃𝑞𝑎

2|𝐴| (𝛾(+) + 𝛾(−) + 𝛾(0)) ⋅ |𝐴| + 𝑃~𝐴 = 1                                                                                   (34) 

follows if |𝐸𝐺𝐸⟩𝑁 is normalized. Eq. (24) and (25) imply that  

𝛾(+) + 𝛾(−) + 𝛾(0) = 2|𝐴|;                                                                                                          (35) 

the latter combined with (34) imply further that 

𝑃~𝐴 = 1 − 𝑃𝑞𝑎
⋅ |𝐴|.                                                                                                                   (36) 

Eq. (36) is a relation implied by a normalized |𝐸𝐺𝐸⟩𝑁, as required, in the form presented in 

(22). Consequently, (36) is also implied by eq. (32) if it is normalized.  

      Using several instances of Axiom 1, one can determine that the average net force on 𝐴 by a 

homogeneous electric field 𝑬𝑙
⃗⃗⃗⃗ , for a specific 𝜂′ in (32), is 

𝒇⃗ 𝐴𝑙 = 𝑃𝐴(𝜂′)

(±) ∑ 𝑞𝑎𝑬𝑙
⃗⃗⃗⃗ |𝐴|

𝑎 ,                                                                                                              (37) 

where  
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𝑃𝐴(𝜂′)

(±)
=

𝑃𝑞𝑎

2|𝐴| ⋅ Ρ(η′)                                                                                                                      (38) 

given the meaning of (𝐵√𝑃𝑞𝑎
)
2
 and that there are Ρ(η′) of those. Given (30), eq. (37) and (38) 

imply that the effective EG-charge is 

|𝑞𝐴(𝜂′)

𝑒𝑓𝑓
| =

𝑃𝑞𝑎

2|𝐴| ⋅ Ρ(η′) ⋅ (|𝐴| − 2𝜂′)|𝑞𝑎|.                                                                                     (39) 

Thus, the magnitude of the average force on 𝐴 by the external electric field, for a specific 𝜂′, is  

  |𝒇⃗ 𝐴𝑙| =
𝑃𝑞𝑎

2|𝐴| ⋅ Ρ(η′) ⋅ (|𝐴| − 2𝜂′)|𝑞𝑎| ⋅ |𝑬⃗⃗ 𝑙|.                                                                                   (40) 

 

Variations in the magnitude of gravitational force 
 

As implied in Axiom 3, the GM of a WP forming an EGE can increase (or decrease). 

Notice that the probability 𝑃±𝑎,∓𝑏 depends on the number of all |Λ±𝑎,∓𝑏⟩ in |𝐸𝐺𝐸⟩𝑁, as shown 

in Axiom 2, given that the state-elements form a complete set. Decreasing (or increasing)  their 

number, ceteris paribus, implies an increment (or diminishment) in 𝑃±𝑎,∓𝑏 which implies, by 

Axiom 1, that the average magnitude of the force of attraction between those two WPs is greater. 

Such an increment (or diminishment) in the average magnitude of that force corresponds to the 

increment (or diminishment) in the GM in Axiom 3.  

Furthermore, the GM of another WP 𝑐 can change as well if 𝑃±𝑎,∓𝑏 changes, ceteris 

paribus, for any pair of WPs 𝑎 and 𝑏 such that 𝑐 ≠ 𝑎 & 𝑐 ≠ 𝑏, given that the probability 𝑃±𝑐,∓𝑐′ 

for that WP and another 𝑐′ , such that 𝑐′ ≠ 𝑎 & 𝑐′ ≠ 𝑏 , would change as the result of the 

completeness conditions of all |Λ±𝑎,∓𝑏⟩. Such a change in 𝑃±𝑐,∓𝑐′ is the case when instead of 

two OPPS, |Λ+𝑎,−𝑏⟩ or |Λ−𝑎,+𝑏⟩, for the two WPs 𝑎 and 𝑏, an interaction defines one state or 

the other. The analysis can be generalized to macroscopic objects, regarding each as subsets of 

the total number of WPs. In this manner, such a detection of the polarity of the EG-charges of 

some WP, ceteris paribus, implies an increment in the GM of all other objects as well.  

In particular, notice that detection of net effective EG-charge of a “particle”, 

corresponding to 𝜂′, reduces eq. (32) to  

|𝐸𝐺𝐸⟩(±𝑅) = 𝐶(±) (𝐵 ⋅ √𝑃𝑞𝑎
∑ ∑ |Ω𝑞𝑎

(±)(𝜂′,𝜌)
 
⟩

|𝐴|
𝑎

Ρ(η′)

𝜌=1 + √𝑃~𝐴|~𝐴⟩)                                       (41) 

where 

𝐶(±) = √
1

𝐵2⋅𝑃𝑞𝑎 ⋅Ρ(η′)⋅|𝐴|+𝑃~𝐴 
,                                                                                                         (42) 

given the orthonormality condition of all |Λ𝑞𝑎,𝑞𝑏
⟩, eq. (17) and (33), and that the reduced state 

(41) itself is normalized; (±)  indicates the polarity of the effective EG-charge detected. To 

calculate the average force on the WP 𝑎 ∈ 𝐴 by 𝑏 ∉ 𝐴, in state (41), Axiom 1 can be applied, 

where the probability of each |Λ±𝑎,∓𝑏⟩, forming part of |Ω𝑞𝑎(±)(𝜂′,𝜌) 
⟩, is 

𝑃±𝑎,∓𝑏
(±)

= (𝐶(±))
2
𝐵2 ⋅ 𝑃𝑞𝑎

⋅ Ρ(η′) ⋅ 𝑃Ω𝑎𝑏
                                                                                   (43) 

given eq. (41), (42), and (16), where 𝑃Ω𝑎𝑏
= 𝑃Ω+𝑎𝑏

 or 𝑃Ω−𝑎𝑏
, corresponding to 𝑃𝑞𝑎

= 𝑃+|𝑞𝑎| or 

𝑃−|𝑞𝑎|. In this way, expression (43), and axiom 1, imply that the average force on either ±𝑞𝑎 by 

∓𝑞𝑏, with either (±) representing the effective EG-charge polarity of the set 𝐴, is 

𝒇⃗ ±𝑎,∓𝑏
(±)

= (𝐶(±))
2
𝐵2 ⋅ 𝑃𝑞𝑎

⋅ Ρ(η′) ⋅ 𝑃Ω𝑎𝑏
⋅
𝐾𝑞𝑎𝑞𝑏

|𝑟 𝑎𝑏|2
 𝒓̂𝑎𝑏.                                                              (44) 
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Using (43) also with Axiom 3 because the right side of such an expression is the probability that 

𝑎 and 𝑏 have charges 𝑞𝑎 and 𝑞𝑏 as shown in (44), entails that 

𝑚𝑎
𝑅(𝜂′) = 𝐶(±)𝐵√𝑃𝑞𝑎

⋅ Ρ(η′) ⋅ 𝑃Ω𝑎𝑏
|𝑞𝑎|√

𝐾

𝐺
,                                                                           (45) 

where 𝑃𝑞𝑎
⋅ 𝑃Ω𝑎𝑏

= 𝑃+𝑎,−𝑏 or 𝑃−𝑎,+𝑏, as indicated in (18); one of those two probabilities vanish 

when detecting (±) effective EG-charge. Combining (45) with the relation between mass and 

charge in Axiom 3 corresponding to an EGE that is not reduced, assuming 𝑃+𝑎,−𝑏 = 𝑃−𝑎,+𝑏 and 

using (18), implies  

𝑚𝑎
𝑅(𝜂′) = 𝐶(±)𝐵√

Ρ(η′)

2
⋅ 𝑚𝑎                                                                                                    (46) 

On the other hand, notice that detection of effective EG-charge with WPs of set 𝐴 implies that 

any WP 𝜇 ∉ 𝐴  and 𝜐 ∉ 𝐴 , in eq. (41), also changes the probability 𝑃±𝜇,∓𝜐  of all the 

corresponding |Λ𝜇,𝜐⟩ because 𝐶(±) is applicable to all those state elements as well. Not only the 

detection of effective EG-charge in a “particle” changes its GM, but also changes the GM of 

WPs 𝜇, 𝜐 ∉ 𝐴. 

  

A theoretical test by exposure to a homogeneous electric field 
 

Figure 1 depicts a thought experiment to test the model. The analysis is analogous to the 

splitting of spin-1/2 WPs passing through a magnetic field, to make an impulsive measurement 

(BOHM, 1989), except that in the present case it is a homogeneous electric field with 

hypothetical charges. Keeping the Ehrenfest theorem in mind (FRIESECKE and KOPPEN, 2009), 

we treat the average of specific quantities as their classical counter parts. All of the neutron 

physical quantities will refer to averages unless stated otherwise. In this way, as shown in Fig. 

1, we may say that the neutrons are exposed to an electric field 𝝐⃗ , along the x-direction, for a 

time 𝜏, providing those neutrons with momentum ±𝑝𝐼𝑥 , where their displacement magnitudes 

depend on their effective EG-charges. After exposure, the neutrons are allowed to spread freely 

for an additional time Δ𝑡. Eq. (40) implies  

𝑝𝐼𝑥 = |𝑞𝐴(𝜂′)

𝑒𝑓𝑓
| ⋅ |𝝐⃗ | ⋅ 𝜏,                                                                                                               (47) 

for some 𝜂′,  assuming that the uncertainty of 𝜏  is negligible; 𝑞𝐴(𝜂′)

𝑒𝑓𝑓
  is defined by (39). The 

displacement is 

𝒙⃗⃗ = ±
𝑝𝐼𝑥

𝑀𝐼
Δ𝑡𝒙̂ ,                                                                                                                          (48) 

where 𝑀𝐼 the inertial mass of each neutron. Combining the two previous expression imply  

𝒙⃗⃗ = ±
|𝑞𝐴(𝜂′)

𝑒𝑓𝑓
|

𝑀𝐼
⋅ |𝜖 | ⋅ 𝜏 ⋅ Δ𝑡𝒙.̂                                                                                                          (49) 

Now, considering the effective EG-charge is eq. (39), combining it with Axiom 3, setting 𝑃𝑎𝑏 =
𝑃+𝑎,−𝑏 = 𝑃−𝑎,+𝑏 to express each |𝑞𝑎| in terms of 𝑚𝑎 (i.e. the GM of a WP before interacting 

with the electric field), the displacement becomes 

𝒙⃗⃗ = ±
𝑃𝑞𝑎

√2𝑃𝑎𝑏
⋅

1

2|𝐴| ⋅ Ρ(η′) ⋅ (|𝐴| − 2𝜂′) ⋅
1

|𝐴|
⋅ √

𝐺

𝐾
⋅ |𝝐⃗ | ⋅ 𝜏 ⋅ Δ𝑡 𝒙̂                                                    (50) 

given that the neutron’s inertial mass 

𝑀𝐼 = |𝐴| ⋅ 𝑚𝐼 ,                                                                                                                                     (51) 
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where 𝑚𝐼 is the inertial mass of one WP within the neutron, and setting 

𝑚𝐼 = 𝑚𝑎.                                                                                                                                      (52) 

Furthermore, to make a calculation of 𝒙⃗⃗ , we hypothesize that the rest mass of one neutrino (𝜈) 

is related to |𝑞𝑎| in Axiom 3; thus, for the neutron,  

|𝐴>| = 1.172 × 109                                                                                                                      (53) 

is a lower bound for |𝐴|  given that 1.67 × 10−27 kg  is the mass of the neutron and 

1.424 × 10−36 kg  (i.e. 0.8 eV/c−2 ) is an upper bound for the neutrino’s mass (AKER et al., 

2022); (53) is implied by their ratio. The effective EG-charge for the neutrons was calculated 

for  

𝜂𝑚𝑎𝑥 =
|𝐴>|

2
− 1,                                                                                                                            (54) 

 

 

Figure 1. Top view of the thought experiment to test the relation between gravitational mass and electric 

charge. Neutrons move through a strong electric field that is perpendicular to their velocities. Those 

neutrons displace beyond their position uncertainties. (The picture is not to scale). 

 

the maximum possible for 𝜂  as stated in (28), that also corresponds to the maximum Ρ(η) 

possible, implied by (29), which is as well the maximum displacement implied by (50). We 

neglect perturbations that might result from the charge distribution within the 

neutron(ALEXANDER et al., 2021; ATAC et al., 2021), that would alter eq. (50), e.g., when those 

neutrons move out of the homogeneous field. Nevertheless, the thought experiment is 

theoretically possible. 

One necessary condition is that the displacement magnitude |𝒙⃗⃗ | , after Δ𝑡 , has to be 

much greater than the position uncertainty 𝛿𝑥Δ𝑡 that results from the expansion of the initial 

uncertainty 𝛿𝑥𝜏 immediately after the exposure, that is,  

|𝒙⃗⃗ | ≫ 𝛿𝑥Δ𝑡,                                                                                                                                 (55) 

where  

𝛿𝑥Δ𝑡 − 𝛿𝑥𝜏 ≈ 𝛿𝑝𝑥 ⋅
Δ𝑡

𝑀𝐼
,                                                                                                                 (56) 

setting  
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𝛿𝑥Δ𝑡 ≫ 𝛿𝑥𝜏                                                                                                                                   (57) 

so that 𝛿𝑥𝜏 can be neglected in (56). From (55),(56), (57), using eq. (50), and requiring that 

𝑀𝐼𝑣𝑧 ≫ 𝛿𝑝𝑥 and  𝑀𝐼𝑣𝑧 ≫ 𝛿𝑝𝑧                                                                                                   (58) 

where 𝑣𝑧 is the speed of the neutrons in the z-direction and the right-hand sides are the quantum 

momentum uncertainties along both directions,  the inequality  

|𝒙⃗⃗ |

Δ𝑡
≥ 𝑣𝑧                                                                                                                                        (59) 

necessarily implies 𝛿𝑥Δ𝑡 ≪ 𝑣𝑧 ⋅ Δ𝑡 ≤  |𝒙⃗⃗ |. In this manner, detecting the effective EG-charge of 

neutrons in this theoretical experiment requires maximizing the product of |𝝐⃗ | and 𝜏 in (50), 

while minimizing 𝑣𝑧 sufficiently so that (59) is satisfied. Inequality (59) guarantees (55), to be 

able to make a detection, if (57) and (58) are true. 

Notice that (58) implies that the z-uncertainty is 𝛿𝑧 ≫ ℏ/(𝑀𝐼𝑣𝑧), and that the one for 𝜏 

is 𝛿𝜏 ≫ ℏ/(𝑀𝐼𝑣𝑧
2/2). To make detections of effective EG-charge with the setup shown in fig. 

1, the length and time of exposure have to be much greater than those uncertainties, whose 

values have to be much greater than the lower bounds implied by those two relations.   

On the other hand, the electric field does not have to cause significant change to the 

neutrons’ wave functions during the exposure time 𝜏 , but only provides the momentum 

necessary to displace them appreciably after leaving the electric field region. That means that 

the electric field is strong enough to provide momentum in a short time but the displacement in 

the region of the electric field is much smaller than |𝑥 |. Mathematically speaking, 
𝑝𝐼𝑥

𝑀𝐼
Δ𝑡 ≫

𝑝𝐼𝑥

𝑀𝐼
τ 

if we regard 𝑝𝐼𝑥  as the maximum possible momentum magnitude along the x-direction. It 

follows that another condition to make a detection of effective EG-charge is  

Δ𝑡 ≫ 𝜏.                                                                                                                                        (60) 

Notice that (60) implies that 

𝛿𝑝𝑥

𝑀𝐼
Δ𝑡 ≫

𝛿𝑝𝑥

𝑀𝐼
τ                                                                                                                            (61) 

which implies further that   

𝛿𝑥𝛥𝑡 − 𝛿𝑥𝜏 ≫ 𝛿𝑥𝜏 − 𝛿𝑥0,                                                                                                             (62) 

using (56) and letting 𝛿𝑥𝜏 − 𝛿𝑥0 =
𝛿𝑝𝑥

𝑀𝐼
τ,   where 𝛿𝑥0  is the uncertainty right before the 

exposure. Consequently, if (60) is true, letting 𝛿𝑥𝜏 ≫ 𝛿𝑥0  so that 𝛿𝑥𝜏 ≈
𝛿𝑝𝑥

𝑀𝐼
τ,  then (57) 

follows.  

We created a table of values, corresponding to ultra-cold speeds (DÖGE et al., 2020), 

making sure that the net time 𝜏 + Δ𝑡 was much smaller than their mean lifetime (GONZALES et 

al., 2021), generating “random” variations of the parameters in eq. (50) in an Excel spreadsheet; 

then, the left side of inequality (59) was calculated to distinguish those that exceeded the right 

of the relation. One of the entries was hand-picked as one of many “optimal” parameter 

combinations to compare to those “randomly” generated. The variations in the electric field 

ranged from 1023 N/C  to 1027 N/C  (each step is increased by a factor of 10); the times of 

exposure ranged from 0.5 s to 2.5 s (in steps of 0.5 s); the time of free expansion ranged from 

5 s to 10 s (in steps of 1 s); the range of speeds was from 5 m/s to 20 m/s (in steps of 5 m/s). 

The aim of the hand-picked set of optimal parameter values was to present a set where those 

for the electric field were as small as possible, the displacement did not exceed 200 m  (no 

theoretical significance for the number; just practical considerations), with an exposure length 

less than 5 m (just for convenience), and making sure that the exposure lengths and times were 

consistent with the quantum uncertainties implied by (58).   
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RESULTS AND DISCUSSION 

 

Using previous expressions, specific values for the thought experiment presented in fig. 

1 were obtained. To calculate |𝒙⃗⃗ | using (50),  

𝑃𝑞𝑎

√2𝑃𝑎𝑏
                                                                                                                                               (63) 

was determined first in the limit that 𝑁 is large; the rest was calculated with 

Ρ (
|𝐴>|

2
− 1) = 𝐶

|𝐴>|−(
|𝐴>|

2
−1)

|𝐴>|
.                                                                                                      (64) 

From the completeness statement in Axiom 2, and assumption A1), such that  𝑃𝑎𝑏 = 𝑃+𝑎,−𝑏 =
𝑃−𝑎,+𝑏, follows that 

𝑃𝑎𝑏 =
1

𝑁(𝑁−1)
.                                                                                                                               (65) 

Notice that 

𝑃𝑞𝑎
≈

1

𝑁
⋅
𝑁−𝑎

𝑁−1
                                                                                                                                 (66) 

is the probability of the corresponding states if 

𝑃Ωab
≈

1

𝑁−𝑎
,                                                                                                                                  (67) 

given eq. (19) and (65); eq. (67) is the case given (17) and given assumption A2). Inserting eq. 

(65) and (66) into (63), imply   

𝑃𝑞𝑎

√2𝑃𝑎𝑏
≈

1

𝑁
⋅
𝑁−𝑎

𝑁−1
⋅
√𝑁(𝑁−1)

√2 
 ;                                                                                                           (68) 

however, given that |𝐴| ≪ 𝑁  and that 𝑎 ∈ 𝐴, 

as 𝑁 → ∞ , 
𝑃𝑞𝑎

√2𝑃𝑎𝑏
→

1

√2
,                                                                                                                (69) 

implying that eq. (50) becomes  

𝒙⃗⃗ = ±(
1

√2
) ⋅

1

21.172×109 ⋅ Ρ (
1.172×109

2
− 1) ⋅ 2 ⋅

1

1.172×109 ⋅ √
𝐺

𝐾
⋅ |𝝐⃗ | ⋅ 𝜏 ⋅ Δ𝑡 𝒙̂                               (70) 

given (25), (53), (64) and (69). Thus, the 𝒙⃗⃗   does not depend explicitly on 𝑁. 

An upper bound for the GM  of a neutron, 𝑀𝑛0
𝑅 , after the interaction, was calculated 

using  

𝑀𝑛𝑜 = |𝐴>| ⋅ 𝑚𝑎 and 𝑀𝑛𝑜
𝑅 = |𝐴>| ⋅ 𝑚𝑎

𝑅,                                                                                     (71) 

where 𝑚𝑎 the upper bound for the rest mass of the neutrino, and 𝑚𝑎
𝑅 is the reduced mass of that 

neutrino corresponding to (46) after the detection. (36), (53), (64), and (66) imply that 𝐶(±) ≈
1 in (42) for large 𝑁; thus, together with (53) and (64) in eq. (46) imply 

𝑀𝑛𝑜
𝑅 (𝜂𝑚𝑎𝑥) ≈ 3.413 × 10−3𝑀𝑛𝑜 ,                                                                                                (72) 

indicating a considerable reduction in the GM of the neutrons after the detection of their 

effective EG-charges. 
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An upper bound for the effective EG-charge of the neutron is 4.044 × 10−51 C; it was 

calculated using (39), the relation in Axiom 3 with 𝑃+𝑎,−𝑏 = 𝑃−𝑎,+𝑏, eq. (53), (54), (64), (69), 

and the upper bound for the rest mass of the neutrino (i.e. 1.424 × 10−36 kg). 

Table 1. Calculations of the hypothetical displacements of neutrons (𝑛0) by exposure to electric fields. 

   

 |𝝐⃗ | 

(𝐍/𝐂) 

𝝉  

(𝐬) 

𝒗𝒛  
 

(𝐦/𝐬) 

𝚫𝒕 

 (𝐬) 

|𝒙⃗⃗ | 
 

(𝐦) 

|𝒙⃗⃗ |

𝚫𝒕
 

(𝐦/𝐬) 

|𝒙⃗⃗ |

𝚫𝒕
> 𝒗𝒛 

 Exposure  

length (m) 

N.A. 1 × 1025 0.5 5 10 121.12 12.11 TRUE 2.5 

1) 1 × 1023 0.5 15 10 1.21 0.12 FALSE 7.5 

2) 1 × 1025 0.5 15 8 96.90 12.11 FALSE 7.5 

3) 1 × 1026 2 15 9 4360.33 484.48 TRUE 30 

4) 1 × 1027 1.5 10 5 18168.04 3633.61 TRUE 15 

5) 1 × 1027 2.5 10 7 42392.08 6056.01 TRUE 25 

6) 1 × 1024 2.5 15 9 54.50 6.06 FALSE 37.5 

7) 1 × 1025 1.5 20 5 181.68 36.34 TRUE 30 

8) 1 × 1024 2 20 9 43.60 4.84 FALSE 40 

9) 1 × 1026 1 10 7 1695.68 242.24 TRUE 10 

10) 1 × 1024 2.5 15 8 48.45 6.06 FALSE 37.5 

 

With the exception of the first row, Table 1 presents “random” values for ultra-cold and 

nearly ultra-cold neutrons, and whether or not they satisfy (59), setting the “factor” 

(
1

√2
) ⋅

1

21.172×109 ⋅ Ρ (
1.172×109

2
− 1) ⋅ 2 ⋅

1

1.172×109 = 2.812 × 10−14                                                          (73) 

corresponding to (64), as well as the corresponding displacements |𝒙⃗⃗ |, using eq. (70), and the 

length of the region of electric field exposure. The first four unit-columns, from the left, are the 

four input parameters. With the exception of the first row, those parameters were varied 

“randomly” in all the rows. Given that the “factor” is defined by (73), (the combinatorial 

formula was calculated using “Scientific Calculator plus 991” available at Google Play) the x-

displacement defined by (50) was calculated for large 𝑁 (numbers were rounded); then, the left 

side of inequality (59) was recorded in the next column (numbers were also rounded). The 

inequality was verified when “TRUE” was the outcome in our Excel spreadsheet. The length 

of the exposure can be implied from the time of exposure and speed considering that the 

uncertainties in those two parameters are not significant. Now, one may observe that not every 

combination of electric field |𝝐⃗ | , time of exposure 𝜏 , and speed 𝑣𝑧  satisfies inequality (59).  

Also, notice that the addition of the time of exposure 𝜏 with the free time of expansion Δ𝑡 for 

all entries are much less that the mean lifetime of an isolated neutron (that is, less than 887.7 

seconds). The first row represents one of many optimal designs, within the range of variations, 

that was hand-picked for comparison with those “randomly" generated: the magnitude of the 

electric field is not the maximum value possible in the range, with neutrons moving with the 

slowest speed possible in the range. In this optimal entry, the expansion time is 20 times the 

time of exposure. Both, the displacement and length of the exposure were smaller than 200 m 

and 5 m respectively (number picked for practical considerations) in this hand-picked entry. On 

the other hand, Table 1 presents only lower bounds for the electric fields that result in the 

displacements shown, given that (53) is only a lower bound used to calculate the “factor” with 

(73) based on the upper bound for the neutrino rest mass. The field values needed for the thought 

experiment are much above the Schwinger limit (BUCHANAN, 2006). 
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The lengths and times of exposure, for all entries in Table 1, can be far greater than their 

possible corresponding uncertainties 𝛿𝑧 ≫ ℏ/(𝑀𝐼𝑣𝑧) and 𝛿𝜏 ≫ ℏ/(𝑀𝐼𝑣𝑧
2/2)  that are implied 

by requiring (58). Thus, it is possible in theory to make detections of effective EG-charge in the 

thought experiment, given the lengths and times introduced, and given an electric field that is 

sufficiently strong. 

One significant aspect of our model is the testable macroscopic entanglement. The 

axioms introduced imply the attraction of ordinary macroscopic objects, with hypothesized 

quantum entanglements, that have remained essentially coherent for the time that galaxies have 

existed. Empirical confirmation of the results shown in Table 1, or similar detectable interaction 

of GM with an electric fields, corresponding to a parameter even greater than (53), would verify 

such a macroscopic entanglement and the conditions for its decoherence. Notice that in the 

experiment proposed, the environment is part of the macroscopic entanglement. Even every 

microstate of every piece of equipment of the thought experiment depicted in fig. 1, in principle, 

cannot be separated from the EGE. Yet, the “randomness” in the macroscopic events, e.g., the 

direction of the homogeneous field, are not correlated in principle with the entanglement under 

consideration. In this manner, confirmation of the EGE could lead to new evidence-based causal 

interpretations of quantum mechanics, involving a physical property of classical mechanical 

objects, without violating the measurement independence postulate (CHAVES et al., 2001).  

Furthermore, the EGE introduced could also be created in the lab, somehow, with 

ordinary electric charges to simulate gravity, and test whether such a field corresponds to the 

properties of an actual gravitational field. Rather than testing ordinary GM to verify whether or 

not it forms part of an EGE, ordinary electric charges could be entangled to create a gravity-

like field, for simulations, as some have realized in laboratory conditions with quantum systems 

(NEZAMI et al., 2023; VAN DER MEER et al., 2023). To create an EGE, a minimum of two 

entangled charges would be sufficient for such an experiment. In this manner, finding ways to 

create an EGE in the lab is another research path with the model introduced that could have 

practical applications. 

 

 

CONCLUSION 

 

With a homogeneous electric field above the Schwinger limit, and exposing neutrons 

moving at ultra-cold speeds, it is possible to make detections of the maximum possible effective 

EG-charge if gravity is a macroscopic EGE, assuming the axioms introduced. Mathematically 

speaking, those axioms do simulate Newtonian gravitation with electric charges. Given our 

estimate for the upper bound of the smallest GM possible, an electric field of approximately 1 

× 1025 N/C is a reasonable lower bound for an experimental test. 
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